
Using Interviewer Random Effects to Calculate Unbiased HIV Prevalence Estimates 

in the Presence of Non-Response: a Bayesian Approach 

 

September 2013 

 

Mark E. McGovern1, Till Bärnighausen2, Joshua A. Salomon3 and David Canning4 

 

Harvard Center for Population and Development Studies  

 

Abstract 

Selection bias in HIV prevalence estimates occurs if refusal to test is correlated with HIV status.  

Interviewer identity is plausibly correlated with consenting to test, but not with HIV status, 

allowing a Heckman-type correction that produces consistent HIV prevalence estimates.  We 

introduce an interviewer random effects Bayesian estimator which overcomes the identification 

problems and corrects for the small sample bias in the existing fixed effects approach.  Our new 

estimator also allows the construction of bootstrapped standard errors and is easy to implement 

in standard statistical software. Our approach is used to produce new estimates and confidence 

intervals for HIV prevalence among men in Zambia and Ghana.  
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1.  Introduction 

Estimates of HIV prevalence in developing countries from serologic testing in nationally 

representative household surveys have been considered a “gold standard” (Boerma et al., 2003). 

However, survey-based prevalence estimates have the drawback that that consent rates to test for 

HIV from respondents may be low.  For example, in the 2003 Ghana Demographic and Health 

Survey (DHS) 17% of men declined to give blood for a HIV test, while in Zambia in 2007 the 

figure was 27%. If the rate of HIV infection is different in the group of individuals who refuse 

than in those who test, then ignoring this missing data may lead to biased estimates of population 

prevalence. Existing estimates typically impute data for these individuals under the assumption 

that non responses are “missing at random”, conditional on the other covariates in the model. 

This produces population prevalence estimates that are very close to the estimates for the sample 

that consents to test (Mishra et al., 2008). Single imputation is the method recommended by the 

World Health Organisation for dealing with missing values. This approach uses the out of 

sample predicted value (i.e. the predicted value based on observable characteristics of those who 

have missing data on HIV status) from the independent variables in a model for observed HIV 

status. This method therefore requires the assumption that there are no unobserved variables that 

are correlated with both HIV status and consent to test, as do other methods which rely on the 

missing at random assumption, including propensity score re-weighting and multiple imputation. 

This assumption is unlikely to hold since a person’s belief about his or herHIV status may be 

related to actual status and may influence the likelihood of consenting to a test. For example, 

individuals who already know, or suspect based on evaluation of past behavior, that they are HIV 

positive may be less likely to consent (Bärnighausen et al., 2012; Reniers and Eaton, 2009; Floyd 

et al., 2012). If this is the case, there will be a selection bias in population prevalence estimates 

based on an incorrect assumption of “missing at random”. 

An attractive alternative to simple imputation and other single equation methods is to use a 

selection model that explicitly accounts for the selection process, and procures population 

estimates that allow for this, such as those proposed by Heckman (1979) and Vella (1998). This 

approach allows consistent estimation of prevalence, even in the presence of unobservable 

influences on consent, such as beliefs about HIV status. By accounting for both consent and HIV 

status equations (individuals first chose whether to test, and it is only conditional on this that we 
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observe their HIV status) explicitly in the model, the key benefit of the Heckman method is that 

we do not require the missing at random assumption. Bärnighausen et al. (2011) adopted this 

approach and found a substantial bias from non-response. In the 2007 Zambia DHS survey, they 

estimated HIV prevalence among men who refused consent to be 53% using the sample selection 

model, but only 12% from an imputation model. This provides evidence that existing incidence 

estimates may be misleading, and that selection on un observables may be an important source of 

bias in existing estimates. Hogan et al. (2012) used the same method to produce selection 

corrected HIV prevalence estimates for 12 African countries, while Clark and Houle (2012a) 

used the approach to produce corrected estimates for the Agincourt Health and Demographic 

Surveillance Site in South Africa. 

Heckman type selection models require an exclusion restriction for identification, namely a 

variable which predicts consent but not HIV status. The innovation in Bärnighausen et al. (2011) 

is to use the identity of interviewers as a plausible variable that is correlated with consenting to 

test but not with HIV status. Higher quality interviewers may have a personality type (for 

example the ability to show empathy for the interviewee), or relevant experience, which 

increases their response rates. This is a testable assumption, and we show in tables 1 and 5 that 

interviewer identity is highly correlated with consent. 

Interviewers are not randomly assigned to participants in DHS surveys, but are assigned to 

specific regions and tend to be matched to respondents by sex and language. However, as 

Bärnighausen et al. (2011) argue, sex and language (as well as rich set of other participant 

characteristics) are recorded in the DHS datasets and can thus be controlled for in the analysis. 

Once they have been controlled for, the interviewer assignment is plausibly random and 

uncorrelated with participants’ HIV status.Clark and Houle (2012b) confirmed this theoretical 

claim by undertaking a simulation study of the Bärnighausen et al. (2011) approach in which 

they set the true prevalence rate in their simulated data and showed that the method provides 

reasonable estimates in large samples unless the assumption that conditional on observed 

participant characteristics interviewer identity is uncorrelated with HIV status is violated.  

While the underlying model is reasonable, there are a number of potential limitations associated 

with the Bärnighausen et al. (2011) approach. Firstly, they use interviewer fixed effects as their 
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key variables that affect consent but not status. These fixed effects, however, are not identified 

for interviewers who conducted only a very small number of interviews, or who have only 

successes or failures in consent, or who are the only interviewer to interview people of a 

particular language in a particular region, making their fixed effects collinear with these 

characteristics. In these cases, the interviewer fixed effects are pooled to a common value in the 

Bärnighausen et al. (2011) approach. The assumption of a common value for the interviewer 

effect on consent in these cases is difficult to justify. In addition, even when interviewer fixed 

effects are formally identified, this identification may be weak and lead to lack of convergence in 

model estimates; Clark and Houle (2012b) found that in a large percentage of their simulations 

the model failed to converge. 

Secondly, while maximum likelihood estimators are consistent, they may have a substantial   

bias in small samples (Green, 2003; Greenland, 2000). In a simulation study Chiburis et al. 

(2012) demonstrated that the finite sample bias for the maximum likelihood estimate of the 

bivariate probit model is particularly large when the true probability of the outcome (HIV status 

in our case) is near a boundary of zero or one. The intuition for this bias is that the maximum 

likelihood estimator selects the most likely parameter value (the mode of the likelihood 

distribution) not the expected value of the parameter. When the likelihood function is uni-modal 

and symmetrical the maximum likelihood estimator is usually unbiased, as for example in the 

case of estimating regression parameters in the linear model with Gaussian errors where 

maximum likelihood estimates are identical to the ordinary least squares estimates. However,  

when the parameter space is bounded, and the true parameter is near the boundary, the likelihood 

function is usually highly skewed and its mode and mean can be very different.          

Finally, the analytical standard errors for the HIV prevalence estimates reported by Bärnighausen 

et al. (2011) are too small since they do not account for regression parameter uncertainty in 

constructing the model of consent and HIV status. Bootstrap standard errors have been shown to 

provide reliable inference in the context of bivariate probit models, and are recommended as an 

appropriate alternative in this context (Chiburis et al., 2012), with the caveat that in small 

samples the maximum likelihood estimate of the  correlation is often at the boundary of the 

parameter space – either + 1 or -1 (Butler, 1996) and when this occurs the assumptions required 
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for asymptotic normality of the maximum likelihood estimator are no longer met and inference is 

non-standard. In particular, the bootstrap approach fails (Andrews 1999a, Andrews 1999b).  

This procedure is difficult to implement with the fixed effects approach, due to the fact that the 

number of interviewees per interviewer will vary with each bootstrap sample, and a different set 

of interviewer fixed effects becomes unidentified, requiring rewriting the model with different 

pooling of interviewer fixed effects for each bootstrap draw. Hogan et al. (2012) addressed this 

issue by using a parametric simulation approach; however, this approach requires a strong 

assumption on the correlations between unobserved error terms in the parameterization.     

We account for these issues by proposing a random effects approach with Bayesian averaging. 

The random interviewer effect assumption means that the interviewer “quality” that affects 

consent to HIV testing, and likely to comprise some of the attributes described above, is taken to 

be a random draw from a normal distribution instead of a fixed effect. This enables us to estimate 

the interviewer effects in cases in which it is difficult to identify and estimate fixed effects. As a 

consequence we avoid arbitrary pooling of interviewer effects and allow straightforward 

bootstrapping to obtain correct confidence intervals for our HIV prevalence estimates.  

The Bayesian averaging approach addresses the bias in the maximum likelihood estimator by 

including information on all values of the correlation parameter between the error terms in 

testing and HIV status which have non zero probability. In contrast, the maximum likelihood 

estimate (by definition the value with the highest posterior probability) ignores less likely values, 

even where their posterior probability is positive. We use a flat prior on the interval [-1, 1]. We 

then estimate a posterior distribution for the correlation based on the data and our selection 

model, which allows us to calculate the expected value of the correlation parameter. This 

approach avoids the problem of boundary estimates, and is feasible to implement even when the 

likelihood is monotonic.  

We illustrate this methodology using data from the Demographic and Health Surveys, and 

implement our procedure for Zambian and Ghanaian men. We examine Zambian men so that the 

results of our random effects model can be compared with the fixed effects approach of 

Bärnighausen et al. (2011); we show the two approaches produce very similar results. We 

examine Ghanaian men because the low HIV prevalence in Ghana makes estimation potentially 
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problematic, and as in Hogan et al. (2012), we find a correlation between being HIV positive and 

testing for this group to be large and positive (close to a correlation of one), so that the maximum 

likelihood estimate for HIV prevalence among those who refuse to test is zero. Our methodology 

is designed both to improve upon the existing fixed effects approach and to be easy to implement 

so that researchers can produce both prevalence estimates and valid confidence intervals given 

their survey data in a straightforward way.5 

We have two main empirical results.  The first result confirms the finding in Bärnighausen et al. 

(2011) that the point estimate for the HIV prevalence rate can change a great deal when we allow 

for response bias. The second result is that, as suggested by Hogan et al. (2012), the analytic 

standard errors reported by Bärnighausen et al. (2011) are too small. Our bootstrapped 

confidence intervals for the prevalence rate can be very large in the presence of response bias 

and uncertainty on the correlation between testing and HIV status.  The correlation between 

agreeing to test and HIV status is fundamentally difficult to estimate, and when we have a large 

volume of non-response in a survey we are actually quite uncertain of the population prevalence 

rate. The confidence intervals for the standard imputation model, based on non-response 

generating data that is missing at random, are very small; this is because the model wrongly 

assumes that the correlation between testing and status is known with complete certainty to be 

zero. 

The rest of this paper is structured as follows. Section 2 outlines the methodology and theory in 

more depth. Section 3 describes the data and Section 4 presents the results. Section 5 concludes. 

2. The Model 

2.1 Bivariate Probit 

Following Bärnighausen et al. (2011) we model consent to HIV testing for person i with 

interviewer j as the observed outcome arising from a latent variable that may interpreted as the 

propensity to consent to testing: 

                                                             
5We provide the STATA computer programs used in our analysis. These can easily be adapted to be used with other 
surveys. 
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*1 0, 0
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ij ij ij
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= > =
 (1) 

where ijs is a dummy for agreeing to test, ijx  are observed characteristics, jz are interviewer 

effects, iju  is random error, and *
ijs is an unobserved latent variable. The equation for HIV status 

ijh of individual i with interviewer j is: 

 

*

*1 0, 0

1

ij h ij ij

ij ij ij

ij ij

h x

h if h h otherwise
h observed only if s

 = +

= > =

=

 (2) 

where *
ijh  is again a latent variable6 and ij  is an error term. We assume ( , )ij iju   are bivariate 

normal, each with mean zero, variance 1, and correlation parameter  ( , )ij ijcorr u  .  

The key parameter in the model is  . If 0 =  there is no correlation between testing and HIV 

status. In this case, simple imputation of the HIV status of those who do not test based on their 

observed characteristics, as in Mishra et al (2008), is possible. If 0    however, testing is 

correlated with HIV status and the predicted probability of being HIV positive of those who 

refuse to test will be different than the average prevalence rate among people with similar 

observable characteristics who do test. The key issue in the model is therefore to find robust 

estimates of  .  

The inclusion of the interviewer effects, which are assumed to affect consent to testing, but not 

HIV status, is crucial to the model. Without variables in the selection equation that are excluded 

from the HIV status equation, the model is identified only by non-linearities, and does not 

provide robust estimates (Madden, 2008).  

Even with a suitable exclusion restriction, there are a number of technical problems associated 

with estimating the model. The first concerns the estimates of the interviewer effects in jz . 

Bärnighausen et al. (2011) estimate each jz as a parameter on an interviewer dummy, essentially 

an interviewer fixed effect. Estimation of these interviewer fixed effects may be difficult because 

                                                             
6Which can be thought of as reflecting propensity to be infected. 



8 

 

for interviewers who have only successes or failures in obtaining consent, the parameter is not 

identified. For example, for interviewers who always obtain consent we know their interviewer 

effect is large and positive, but it can be arbitrarily large as any very large positive interviewer 

effect above some threshold will predict perfect success, and we cannot distinguish between 

different effect sizes. In addition, we control for the region and language of the interviewee. 

However, interviewers usually work in only a small number of regions, and an effort is made to 

match them with interviewees by language. This may create co-linearity between the interviewer 

effect and the region and language dummies in the equation, making it difficult or even 

impossible to estimate the interviewer effects (i.e. weak or no identification of the interviewer 

parameter). The approach in Bärnighausen et al. (2011) was to limit estimation of individual 

interviewer effects to those interviewers with more than 50 interviews, and not to use the 

individual effects of those interviewers who had conducted more than 50 interviews when 

including them lead to identification problems.7 Instead, interviewers with less than 50 

interviewers or whose inclusion caused identification problems were grouped together as a 

baseline group with an assumed common interviewer effect.  

A conceptual difficulty is that grouping all of the interviewers whose individual interviewer 

effects may not be identified into a baseline group with the same assumed effect may not be a 

convincing strategy, because we may be pooling interviewers who always have consent with 

those who never achieve consent and assuming they have the same average effectiveness in 

obtaining consent. Thus we do not exploit the fact that the HIV tests made by interviewers who 

always obtain consent are the most informative since they do not suffer from selection bias.  

Even if the individual interviewer effect is not fully identified, it may be partially identified (e.g. 

see Tamer, 2010), so that based on the data we can limit its value to an interval, and the fixed 

effect approach with pooling for under-identified effects does not exploit this.  

A second difficulty is related to drawing bootstrap samples for uncertainty estimation. 

Bootstrapping is particularly appealing in this setting since we want to know the confidence 

intervals of the model’s predictions as well as for its parameters. Chiburis et al. (2012) have 

                                                             
7  The identification problem is usually manifested in practice by the model to failing to converge, technically the 
unidentified parameters have estimated standard errors that are large and increasing at every iteration - the limit is an 
unbounded standard error on the unidentified parameter.         
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illustrated that the bootstrap is appropriate in the context of bivariate probit selection models. 

However, the identification of the interviewer fixed effects depends on the bootstrap sample 

drawn, and the interviewer fixed effects chosen to ensure identification in the actual sample are 

often not identified in a bootstrap draw.  

 

2.2 Random Effects  

Our approach to this problem is to assume that the unobserved interviewer effects reflect some 

underlying parametric distribution which describes interviewer quality. If interviewers were 

assigned randomly to survey households we could simply assume that each interviewer was a 

random draw from the pool of interviewers. However the systematic matching of interviewers to 

subjects, particularly by region and language, means that there may be a correlation between 

interviewer success rate and who they are matched with. Following Mundlak (1978) and 

Chamberlain (1980), we write the interviewer effect as: 

 
௝ݖ = ௝ݔ̅ߜ + ,	௝ݒ ௝ݔ̅ = ∑ ௜௝ݔ

௡ೕ
௜ ௝݊ൗ , ,௝:ܰ(0ݒ  ௭ଶ) (3)ߪ

 

Where jx represents the average characteristics of the jn  people that interviewer j interviews. 

Excluding these controls could potentially invalidate the exclusion restriction of the model. In 

order to be consistent, a requirement of random effects models is that there is no correlation 

between the explanatory variables in the model and the error term (Mundlak, 1978; Chamberlain, 

1980). In order for this to hold, we must assume that, controlling for these observable averages, 

the variation in which across interviewers is caused by their systematic assignment to particular 

groups, there is no remaining correlation between the error term in equation (3)  and the 

individual level variables in the model. In particular, we assume that interviewers are not 

systematically assigned to groups of survey participants based on unobservable characteristics 

but only on the observable characteristics measured by the survey. 
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The jx  are the average characteristics of the set of interviewees a particular interviewer is 

assigned to. As these depend only on the survey design, they should not enter the HIV status 

equation8.  

This assumption of interviewer random effects gives us the selection equation  

 
*

*1 0, 0
ij s ij j j ij

ij ij ij

s x x v u

s if s s otherwise

 = + + +

= > =
 (4) 

In principle we could estimate the system given by (2) and (4) by maximum likelihood. 

However, this is difficult as we have a selection equation which has a random effect, requiring 

numerical integration, inside a bivariate probit model.  

There is, however, a simple consistent estimator. Dubin and Rivers (1989) show that the 

bivariate probit model with selection can be estimated by first finding a consistent estimate of the 

parameters of the selction model, ignoring the covariance of the error terms, and then estimating 

the parmeters of the full model by maximum likelihood, holding the selection equation 

paremeters at their first stage estimates. The procedure is as follows. We firstly estimate the 

interviewer effects from the selection equation only (stage one), then include these constructed 

parameters as our exclusion restriction in a Heckman model (stage two). This two-stage 

approach is consistent, though not fully efficient, and the second stage does not produce the 

correct analytic standard errors since the interviewer effects are estimated in the first stage but 

treated as exogenous variables in the second stage. Murphy and Topel (1985) discuss confidence 

intervals for models using data that are estimated from a first stage. We can implement this 

approach by first estimating the interviewer effect as shown in equation (3). Equation (4), the 

selection equation, is then run using the predicted interviewer effect as the exclusion restriction. 

Assuming random effects avoids the estimation problems of the fixed effects approach. The 

assumption that the interviewer effects are normally distributed random effects around jx means 

we have a smaller set of parameters to estimate than in the fixed effects model. A simple method 

of constructing consistent estimates of the selection equation for the first stage is to estimate a 

                                                             
8 If they are included in the HIV status equation they have little effect on our results; they simply reduce the 
efficiency of estimation.  
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probit model and compute the predicted random effect ˆ jv as the average of the error term for 

each interviewer.9 

We use these selection equation estimates to compute ˆ ˆˆ j j jz x v= + the estimated interviewer 

effect, where ̂ is the estimated coefficient on the interviewer average from (3), and ˆ jv  is the 

predicted random effect from (3).10 Having obtained the estimates ݖఫෝ,we can then estimate the 

full bivariate probit model in (1) and (2) using this estimated interviewer effect as the variable 

that affects selection but does not appear in the HIV status equation.  

Since the first stage is a consistent estimator of the interviewer effect, the two-stage procedure 

will be consistent. We can address the problem of incorrect standard errors by bootstrapping over 

the whole two-stage procedure.11 That is to say, for each bootstrap resample we re-estimate the 

first stage consent, and then run the bivariate probit model with the estimated interviewer effects 

from the first stage, and calculate the prevalence estimates based on the predicted HIV status of 

those who refuse to test. For both Zambia and Ghana we compare our estimates of the 

interviewer effects based on this random effects approach with those found by the fixed effects 

model.  

 

2.3 Bayesian Averaging 

While the random effects approach solves the identification problems in Bärnighausen et al. 

(2011) and allows bootstrapping, a second problem remains. In small samples, particularly when 

failure to consent is rare, or the HIV rate is low, it is difficult to estimate the correlation between 

consent to test and HIV status (Butler, 1996), and the maximum likelihood estimates in the 

context of a bivariate probit model are biased (Chiburis et al., 2012). In these cases the maximum 

likelihood estimate of ρ may  fail to converge, or produces a result of +1 or -1, on the boundary 

                                                             
9 Estimating this first stage as a random effects model is highly computationally intensive and produces almost 
identical results to the simple probit. The simple probit produces consistent estimates and this is all this is required 
for the second stage.   
10 Our results are robust to just using ˆ jv  alone as the interviewer effect rather than the full estimate ˆ ˆj jx v +  . 
11 An alternative would be to calculate corrected standard errors as in Murphy and Topel (1985). 
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of the possible parameter space, in which case the assumptions required for asymptotic normality 

of the maximum likelihood estimator are violated, and standard inference, including 

bootstrapping, is invalid (Andrews, 1999a; Andrews 1999b). Such a result also has the 

implication that, in terms of predicted probabilities, everyone who fails to test is either HIV 

positive with certainty (ߩ = −1), or HIV negative with certainty (ߩ = +1), which seems 

implausible. In these cases other estimators may have better small sample properties than the 

maximum likelihood estimator (Fosdick and Raftery 2012). In general, maximum likelihood 

often does not have desirable finite sample properties(Green, 2003; Greenland, 2000) as the 

estimate is the most likely value (in terms of posterior probability), which gives zero weight to 

values with lower posterior probabilities, even when those probabilities are positive. 

We wish to construct an estimate of  that is consistent and also corrects for this small sample 

bias.  The Bayesian approach has particular appeal within a likelihood framework.  Take a data 

set *x  and a parameter vector * . The likelihood of * is simply the probability of the data 

given these parameters:    

 ( *) ( * *)L P x =  (5) 

We are not generally concerned with the likelihood of the observed data given the parameters, 

we are more interested in the probability of the parameters given the observed data. However, by 

Bayes rule: 

 
( * *) ( *)

( * *)
( *)

P x P
P x

P x
 

 =  (6) 

Where ( *)P  is our prior on the parameters. If we have a flat prior so ( *)P  is the same for 

every *  we have ܲ(ݔ|∗ߠ∗) ∝ (∗ߠ|∗ݔ)ܲ = and the maximum likelihood estimate of * ,(∗ߠ)ܮ is 

also the estimate that has the highest posterior probability given the data. While this estimate is 

the most likely parameter value given the data we can construct an alternative Bayesian estimator 

as  

 

෢∗ߠ  = (∗ݔ|∗ߠ)ܧ = ∫  (7)  ∗ߠ݀(∗ݔ|∗ߠ)ܲ∗ߠ
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If the prior is flat we have 	P൫θ*หx*൯ ∝ 	L(θ*), the posterior probability is proportional to the 

likelihood and we can write our estimator as   

෢∗ߠ  = (∗ݔ|∗ߠ)ܧ = ∫  (8)  ∗ߠ݀(∗ߠ)ܮ݇∗ߠ

Where k  is a normalization factor so that the integral of the likelihood over the parameter space 

is one and ( *)kL  is a probability density function. 

 

This approach essentially takes account of model uncertainty in small samples. The standard 

maximum likelihood approach chooses the most likely value of * , while our Bayesian 

approach gives us an average value of *  where we average over different models weighted by 

the probability of the model being correct. This Bayesian averaging gives consistent estimates 

(the likelihood function asymptotically puts zero weight on incorrect parameters) and is an 

unbiased estimator by construction under the assumption that the prior is correct. It has good 

small sample properties in Monte Carlo studies (Fosdick and Raftery 2012). This Bayesian 

averaging approach may be particularly appropriate where we are interested in predictions, since 

these predictions take account of uncertainty of the model parameters (Hoeting et al., 1999).  

This approach is implemented by calculating the likelihood for each value of ρ, and then taking 

the weighted average of ρ, where the weights are the likelihood values (transformed so that these 

values integrate to 1). 

 

In principle we could construct Bayesian average estimates for all the parameters in the model. 

However, in practice the maximum likelihood estimates for most of the parameters in the model 

are well determined, and it is only the correlation parameter ρ that really poses problems. We 
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therefore Bayesian average only over ρ, using a concentrated likelihood for each ρ (see appendix 

for details). Once ρ is estimated by Bayesian averaging we find the maximum likelihood values 

of the other parameters given this value of ρ. We report both the maximum likelihood estimates 

and our new Bayesian average estimates together with bootstrapped standard errors and 

confidence intervals in each case.  

As with any Bayesian estimator there is an issue with the choice of a prior distribution.   We use 

a uniform prior for ρ on the interval [-1,1]. Given our model, we can estimate the HIV status 

among those who do not consent to test by calculating a predicted probability of being HIV-

positive given the model. We can bootstrap the estimated prevalence rate based on these 

predictions. This approach corrects both for the model uncertainty (each bootstrap replication 

estimates a new set of parameter values) as well as for sampling uncertainty since the bootstrap 

replicates the variation in who is sampled due to the survey design. The DHS surveys are carried 

out within fixed strata representing urban and rural areas of each region. With each stratum, a 

cluster of households is randomly selected from a set of possible primary sampling units defined 

by a preceding census. Our bootstrapping takes account of the stratification and cluster 

randomization of the survey design by drawing fixed number of clusters (the same as in the 

original data) from each stratum in each sample.      

This approach gives us estimates for those who refuse to consent to test. For individuals who 

appeared on the household roster and were not contacted or interviewed we follow the standard 

approach to impute HIV status based on the set of reported characteristics of the person (reported 

by the household respondent). Bärnighausen et al. (2011) also used a selection model to predict 

the prevalence rate of this group. In principle rather than separate selection mdoels for contact 
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and interview, and consenting to test, we should have a sequential model since requesting a test 

only occurs after people are interviewed (Clark and Houle, 2012a). However both Bärnighausen 

et al. (2011) and Clark and Houle (2012a) found no evidence of a selection bias among those 

who were not interviewed, and we simply impute the HIV prevalence for this group based on the 

assumption they are missing at random and focus on the potential selection bias among those 

who were interviewed but refused to test.  

 

3. Data 

We use data from the nationally representative Demographic and Health Surveys of men aged 

15-59. We present results from Zambia (2007) and Ghana (2003). The samples consist of 7,134 

men in Zambia, and 5,334 men in Ghana. Table 1 shows the numbers testing for HIV, the 

numbers who undertook a DHS interview but refused consent to test for HIV, and the number 

who did not undertake an individual interview and did not test. The majority of people in the 

latter group are those who could not be contacted and thus could not be offered interview 

participation and HIV testing. Further details of the sampling design and HIV testing procedure 

are provided in Bärnighausen et al. (2011). Descriptive statistics for the individual interview 

samples for Zambia and Ghana are shown in Tables 2 and 3.  

Figure 1 shows the distribution of the number of interviews by interviewer for men for Zambia. 

Approximately 12% (or 750 individuals) had an interviewer with less than 50 interviews in total. 

This highlights one of the advantages of the random effects approach we adopt in this paper, 

namely that we are able to estimate an interviewer effect for each of these individuals, even those 

whose interviewers conducted a single interview. As has been documented previously 
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(Bärnighausen et al., 2011), there is substantial variation in the effectiveness of interviewers, as 

measured by the proportion of individuals they succeed in obtaining consent for a HIV test from. 

Figure 2 shows the distribution of success rate by interviewer for Zambia. The mean success rate 

for interviewers is 0.8, with a standard deviation of 0.18. Figures 3 and 4 show the distribution of 

the number of interviews by interviewer and the distribution of interviewer success rate for 

Ghana (where there is similar variation to Zambia). 

 

4. Results 

We begin by estimating the interviewer random effects as the average error term (per 

interviewer) from a probit model for HIV testing consent where we include a standard set of 

covariates along with the mean of these variables for each interviewer to capture the effects non-

random allocation of interviewers to participants as shown in equation (4). Table 4 presents 

marginal effects from the probit for HIV consent for Zambia. This table is a single regression for 

HIV consent where the first column shows the coefficients on the individual level X variables, 

while the corresponding coefficients on interviewer averages are shown in the second column. At 

the individual level the following variables affect consent to test: education, location, prior 

sexually transmitted disease (STDs), age at first intercourse, number of partners, willingness to 

care for a HIV positive relative, knowing an AIDS victim, and being a smoker. For example, an 

extra year of education increases the probability of consenting to a HIV test by roughly 0.5 

percentage points. Apart from years of education, all interviewer averages are measured in 

percentages. Many of the interviewer average measures are significant in predicting consent. For 

example, in Table 4 if the interviewee speaks Lozi the probability of consent to testing increases, 
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but the effect is not statistically significant. However, the significant coefficient on the average 

number of interviews with Lozi speakers your interviewer had is positive and statistically 

significant.  This suggests that the Lozi speaking interviewers may have been better than average 

at obtaining consent.   The distribution of fitted predicted random effects, the average of the error 

terms for each interviewer, from this model are shown in Figure 5.  

Table 5 presents marginal effects for the Heckman selection model consent and HIV equations 

for Zambia. The first two columns give results for the maximum likelihood fixed effects 

approach as used by Bärnighausen et al. (2011). The middle two colums give results for our 

maximum liklihood random effects approach, and the final two columns give the results for 

Bayesian averaging of the random effects model. Controls for age, region, ethnicity, and religion 

are included but not shown in the table.  

The coefficients on the interviewer dummies for each interviewer for the consent equation in the 

Heckman approach in column 1 are also not shown because of space constraints.12 In the consent 

equations for the random effects approach in columns 3 and 5, we report the coefficient on the 

interviewer effect estimated from the regression shown in Table 4. The first two models in Table 

5 are estimated by maximum likelihood. To estimate the third model the Bayesian average we 

estimate the likelihood on a grid of values of  (we use values between -1 and +1 at intervals of 

0.01). We than calculate the likelihood of the model and posterior probability of each value of 

and the then find the expected value of  based on this probability.13 The coefficients reported in 

table 5 for the Bayesian average are calculated with this value of   imposed. Coefficient 

                                                             
12See figure 5 in the appendix. 
13 The posterior probability is calculated by applying a constant to the likelihood for each value of ρ such that these 
transformed likelihoods integrate to 1. 
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estimates across the three models are very similar, and in any case our main parameter of interest 

when estimating correcting prevalence rates is the correlation between the selection and HIV 

equations.  

In Table 6, we present the estimated correlation coefficient ρ for Zambia from the different 

models. The negative values estimated indicate that those who refuse to test are more likely to be 

HIV-positive. The maximum likelihood random effects approaches yields a ρ of around -0.50, 

which is somewhat lower than the 0-.75 obtained from the fixed effects estimator. The Bayesian 

average estimate is slightly smaller yet at -0.44. A negative value of ρ indicates that male 

respondents who are HIV positive are less likely to consent to a test in Zambia. 

Figure 6 presents the Bayesian averaging posterior for ρ where we use the random effects 

exclusion restriction and the concentrated likelihood approach described in section 2. Figure 6 

also shows maximum likelihood estimate, the Bayesian average estimate and the 95% bootstrap 

confidence interval for the Bayesian average estimate. The 95% bootstrap confidence interval is 

calculated using the appropriate centiles from the empirical distribution of the bootstrap 

estimates. This approach is more appropriate than normal-based approximations when the 

distribution of the parameter of interest is skewed.  

Table 7 presents estimates of HIV prevalence14 among those who refused to consent to a HIV 

test, again comparing the fixed effect, random effect and Bayesian average methods. As with the 

correlation coefficient, the estimates from the random effects model are lower than from the 

fixed effects model (32% v 52%). The corresponding estimate from the imputation model is 

12%. The standard confidence intervals of these prevalence estimates do not take account of the 

                                                             
14 All of our prevalence estimates are weighted and take account of survey design. 
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uncertainty in the estimation of interviewer effects, and therefore overstate the precision of the 

point estimates for ρ (Murphy and Topel, 1985). Chiburis et al. (2012) recommend the use of the 

bootstrap for inference in the context of selection models to correct for poor coverage of analytic 

standard errors. In line with these simulation results, we find that the bootstrap confidence 

interval for the random effects model is almost 10 times as wide as the analytic standard errors 

for the fixed effects model. Our random effects procedure allows us to implement a bootstrap 

where we re-estimate the random effects with each iteration to take account of this additional 

source of parameter uncertainty. We use 1000 iterations to calculate these standard errors, and 

use the empirical distribution of the replications to calculate the confidence intervals in order to 

allow for asymmetry. As discussed above, it is not possible to bootstrap standard errors in the 

fixed effects model due to the difficulties associated with identifying interviewer effects for 

interviewers with a small number of interviews, which would change with each sample.   

Table 8 presents the resulting population estimates. We also compare these results with the 

estimates from an imputation model, and show the prevalence among those who participated in 

HIV testing. The imputation model generates an estimate of 12%, which is substantially smaller 

than the 20% estimate from the fixed effects model. The random effects and Bayesian average 

models give estimates that fall in between imputation and the fixed effects model (around 16%). 

Comparing the bootstrap and analytic standard errors again highlights how the precision of these 

estimates is greatly overstated with standard approaches which do not account for uncertainty in 

the estimation of ρ.  

We next turn to estimating the models for men in Ghana, where the standard maximum 

likelihood estimator is difficult to implement because of the low HIV prevalence. In addition, the 
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small sample size may induce bias in conventional maximum likelihood estimates. Table 9 

presents marginal effects for the selection model used to calculate the interviewer effects15 and 

Table 10 gives the results of the three models for Ghana. As with Zambia, we compare results 

from the three approaches.16 

Figure 10 demonstrates that for men in Ghana the concentrated likelihood function is 

approximately monotonic in ρ, resulting in maximum likelihood estimates which are close to the 

boundary of the parameter space. The maximum likelihood estimate places 0 weight on all the 

values in the left hand tail of the posterior distribution in figure 10 as they are less probable than 

the most likely value. To find an unbiased estimate we integrate over the posterior to account for 

all values of  which have positive probability. Under the assumption that the prior is correct, 

this will result in an unbiased estimate for . We obtain a value of around 0.6, indicating that 

individuals with HIV are more likely to consent to testing in Ghana, at least for men.17 Table 11 

shows our estimate of ρ our confidence intervals using each model. The positive value of ρ 

means that those who are HIV positive are more likely to test, and our population prevalence 

estimates are lower than those obtained from imputation methods. The positive selection we find 

in Ghana is in contrast to the negative selection we find in Zambia. Hogan et al. (2012) also find 

positive selection in Ghana and some other countries. Differences in selection mechanisms may 

reflect differences in HIV prevalence and other country specific factors. For example, being HIV 

positive itself is unlikely to be a common reason for non-consent in a country with very low HIV 

                                                             
15Figure 8 shows the distribution of the interviewer random effects for Ghana. 
16 Coefficients on the interviewer fixed effects in the relevant consent equation for Ghana are presented in table 10 
in the appendix. 
17 The fact that the random effects maximum likelihood estimate lies outside the bootstrap confidence interval for 
the Bayesian average estimate reflects the fact that the posterior distribution has a long left hand tail which is not 
accounted for by the standard maximum likelihood estimator, and that we use the empirical distribution of the 
bootstrap estimates to allow for asymmetry when calculating the confidence interval. 
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prevalence. Tables 12 and 13 report our prevalence estimates for men who refuse to test and for 

the whole population. Relatively narrow confidence intervals reflect the low HIV prevalence in 

Ghana and the lack of potential variation in HIV status in replicate samples when the point 

estimate for the group who refuse consent is close to 0.For the random effects model and the 

Bayesian averaging approach we find a prevalence rate of approximately 1.4%, compared to 

1.6% in the case of the imputation model.  

 

5. Discussion and conclusions 

This paper confirms that non-response can be an important source of bias in HIV prevalence 

estimates taken from household surveys. We innovate by proposing a random effects model 

which improves on previous fixed effects approaches by allowing us to estimate interviewer 

effects, even for interviewers with a limited number of interviews. In addition, we propose a 

Bayesian averaging procedure which facilitates the estimation of the correlation between HIV 

consent and HIV status, and allows for unbiased estimates in small samples.  Using data from the 

2007 Zambian Demographic and Health Survey, we find that men with HIV are less likely to 

consent to a HIV test. For Ghana, we find that conventional methods slightly overstate HIV 

prevalence.  

Perhaps the most important result we find is that the corrected confidence intervals around the 

HIV prevalence point estimate can be very wide. These wide confidence intervals accurately 

reflect the fact that it is very difficult to correct statically for the bias that may occur when many 

people refuse to test. As long as consent rates are as low as they currently tend to be in many 

nationally representative HIV surveys in developing countries, uncertainty in HIV prevalence 
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estimation will likely remain high. It is important not to understate this uncertainty and our 

approach provides the first practical solution to account for both sampling and parameter 

uncertainty in the estimation of HIV prevalence confidence intervals. 

A key assumption in the model is the exclusion restriction, which requires interviewer identity to 

be uncorrelated with HIV status. While it is plausible that interviewer allocation should only be 

affected by survey design, this is impossible to prove conclusively. As the resulting HIV 

prevalence prediction relates to a population for whom we never get to observe true HIV status, 

it is important to independently validate the model. We are therefore working to obtain objective 

data in the form of mortality records with which we can do so. This limitation, coupled with the 

wide confidence intervals we find, points towards an urgent need to improve HIV survey design 

and execution so as to increase the consent rates to reduce the uncertainty in HIV prevalence 

estimates that is induced by selection bias.   
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Tables 

 

Table 1 Sample Size for HIV Estimation 

 Zambia Ghana 
Observed HIV Status 5,163 4,271 
Missing HIV Status (Consent Refused) 1,318 743 
Missing HIV Status (No Contact) 653 320 
Total 7,134 5,334 
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Table 2 Descriptive Statistics (Eligible Men) for Zambia DHS 2007 (Individual Sample) 

 No. %   No. % 

Age Category     
Would Respondent Care 
for HIV Relative?   

15-19 1,410 21.69  No 347 5.34 
20-24 1,071 16.48  Yes 6,146 94.66 
25-29 988 15.2  Total 6,493 100 
30-34 933 14.35     

35-39 733 11.28  

Does Respondent Know 
Anyone Who Died of 
AIDS?   

40-44 471 7.25  No 2,866 44.19 
45-49 397 6.11  Yes 3,619 55.81 
50-54 294 4.52  Total 6,485 100 
55-59 203 3.12     
Total 6,500 100  Ever Had HIV Test   
    No 4,986 76.75 
Years of Education    Yes 1,510 23.25 
0 309 4.77  Total 6,496 100 
1-7 3,118 48.14     
8+ 3,050 47.09  Smoker   
Total 6,477 100  No 4,951 76.25 
    Yes 1,542 23.75 
Wealth Quintile    Total 6,493 100 
Poorest 1,145 17.62     
2nd poorest 963 14.82  Alcohol Drinker   
3rd poorest 1,315 20.23  No 3,876 59.69 
4th poorest 1,600 24.62  Yes 2,618 40.31 
Wealthiest 1,477 22.72  Total 6,494 100 
Total 6,500 100     
    Ethnicity   
Location    Bemba 1,117 17.18 
Capital, large city 597 9.18  Lunda (Luapula) 152 2.34 
Small city 469 7.22  Lala 166 2.55 
Town 1,765 27.15  Ushi 149 2.29 
Countryside 3,669 56.45  Lamba 121 1.86 
Total 6,500 100  Tonga 766 11.78 
    Luvale 160 2.46 
Region    Lunda (Northwestern) 311 4.78 
Central 600 9.23  Mbunda 124 1.91 
Copperbelt 812 12.49  Kaonde 249 3.83 
Eastern 857 13.18  Lozi 477 7.34 
Luapula 560 8.62  Chewa 488 7.51 
Lusaka 962 14.8  Nsenga 313 4.82 
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Northern 715 11  Ngoni 323 4.97 
Northwestern 630 9.69  Mambwe 183 2.82 
Southern 774 11.91  Namwanga 176 2.71 
Western 590 9.08  Tumbuka 295 4.54 
Total 6,500 100  Other 930 14.31 
    Total 6,500 100 
       
Marital Status    Language   
Never married 2,546 39.17  English 465 7.15 
Currently married 3,630 55.85  Bemba 2,374 36.52 
Formerly married 324 4.98  Lozi 611 9.4 
Total 6,500 100  Nyanja 1,955 30.08 
    Tonga 482 7.42 
Ever Had STD    Other 613 9.43 
No 6,165 95.09  Total 6,500 100 
Yes 318 4.91     
Total 6,483 100  Number of Partners   
    None 1,595 24.61 
Age at First Intercourse    1 3,921 60.49 
Never Had Sex 908 13.98  2+ 966 14.9 
15 or Younger 2,016 31.04  Total 6,482 100 
>15 3,571 54.98     
Total 6,495 100  Religion   
    Catholic 1,347 20.76 
Had High Risk Sex    Protestant 4,932 75.99 
No 4,707 72.62  Muslim 211 3.25 
Yes 1,775 27.38  Total 6,490 100 
Total 6,482 100     
       
Used Condom Last 
Intercourse       
No 5,380 82.9     
Yes 1,110 17.1     
Total 6,490 100         
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Table 3 Descriptive Statistics (Eligible Men) for Ghana DHS 2003 (Individual Sample) 

 No. %    No. % 
       
Age Category    Number of Partners   
15-19 1,096 21.85  None 1,707 34.07 
20-24 697 13.9   1 2,824 56.37 
25-29 715 14.26  2+ 479 9.56 
30-34 632 12.6  Total 5,010 100 
35-39 526 10.49     

40-44 407 8.12  
Used Condom Last 
Intercourse   

45-49 435 8.67  No 4,451 88.86 
50-54 302 6.02  Yes 558 11.14 
55-59 205 4.09  Total 5,009 100 
Total 5,015 100     

    
Respondent Would Care 
for HIV Relative   

Years of Education    No 1,389 27.71 
0 1,178 23.55  Yes 3,624 72.29 
1-7 1,110 22.19  Total 5,013 100 
8+ 2,714 54.26     

Total 5,002 100  

Respondent Knows 
Anyone Who Died of 
AIDS   

    No 3,052 60.97 
Wealth Quintile    Yes 1,954 39.03 
Poorest 1,221 24.35  Total 5,006 100 
Poorer 953 19     
Middle 883 17.61  Ever Had HIV Test   
Richer 906 18.07  No 4,580 91.34 
Richest 1,052 20.98  Yes 434 8.66 
Total 5,015 100  Total 5,014 100 
       
Region       
Western 457 9.11     
Central 300 5.98  Religion   
Greater Accra 621 12.38  None 358 7.14 
Volta 386 7.7  Roman Catholic 794 15.84 
Eastern 453 9.03  Anglican 47 0.94 
Ashanti 785 15.65  Methodist 301 6 
BrongAhafo 593 11.82  Presbyterian 361 7.2 
Northern 638 12.72  Other Christian 1,785 35.61 
Upper West 387 7.72  Moslem 1,050 20.95 
Upper East 395 7.88  Traditional/Spiritualist 317 6.32 
Total 5,015 100  Total 5,013 100 
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Marital Status       
Never Married 2,002 39.92  Smoker   
Currently Married 2,726 54.36  No 4,393 87.63 
Formerly Married 287 5.72  Yes 620 12.37 
Total 5,015 100  Total 5,013 100 
       
Ever Had STD    Ethnicity   
No 4,834 96.8  Akan 2,025 40.38 
Yes 160 3.2  Ga/Dangme 338 6.74 
Total 4,994 100  Ewe 614 12.24 
    Guan 191 3.81 
Age at First Intercourse    Mole-Dagbani 1,235 24.63 
Never Had Sex 1,171 23.38  Grussi 157 3.13 
15 or Younger 511 10.2  Gruma 188 3.75 
>15 3,327 66.42  Other 267 5.32 
Total 5,009 100  Total 5,015 100 
       
Had High Risk Sex    Language   
No 3,931 78.46  English 1,351 26.94 
Yes 1,079 21.54  Akan 2,804 55.91 
Total 5,010 100  Ga 53 1.06 
    Ewe 270 5.38 
    Nzema 34 0.68 
    Dagbani 203 4.05 
    Other 300 5.98 
        Total 5,015 100 
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Table 4 Marginal Effects from Probit for HIV Test Consent for Zambian Men 
 

  HIV Test Consent 

Variables 
Individual Level 

Variables 
Interviewer Level 

Averages 
Years of Education 0.00475** -0.0001 
 (0.002) (0.000) 
Wealth Category   
Poorest -0.00731 -0.0086*** 
 (0.031) (0.002) 
Poorer -0.02721 -0.0046 
 (0.031) (0.003) 
Middle -0.03732 -0.0059 
 (0.027) (0.004) 
Richer -0.00842 -0.0109*** 
 (0.019) (0.004) 
Location   
Small city 0.12471*** 0.0039 
 (0.037) (0.004) 
Town 0.14458*** 0.0036 
 (0.044) (0.004) 
Countryside 0.20348*** 0.0008 
 (0.062) (0.003) 
Marital Status   
Never Married 0.01165 0.0036 
 (0.028) (0.003) 
Currently Married 0.03447 -0.0018 
 (0.031) (0.004) 
Had STD 0.04105* 0.0036 
 (0.022) (0.003) 
Age at First Intercourse   
15 or Younger 0.04986** 0.0043 
 (0.020) (0.003) 
>15 0.03778* 0.0013 
 (0.022) (0.003) 
Had High Risk Sex 0.05241** -0.0038 
 (0.025) (0.004) 
Number of Partners   
None 0.05095** -0.0078** 
 (0.025) (0.004) 
2+ 0.01516 0.0021 
 (0.021) (0.003) 
Used Condom Last Intercourse -0.00033 -0.0005 
 (0.016) (0.002) 
Would Care for HIV Relative 0.05757** 0.0030 
 (0.024) (0.003) 
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Knows Someone Who Died of 
AIDS 0.03795*** -0.0011 
 (0.011) (0.001) 
Previously HIV Tested 0.00504 -0.0038 
 (0.013) (0.002) 
Smoker 0.03644*** 0.0041** 
 (0.012) (0.002) 
Drinks Alcohol 0.01008 -0.0064*** 
 (0.012) (0.002) 
Language   
English -0.04601 0.0079 
 (0.062) (0.008) 
Bemba -0.00834 0.0037 
 (0.061) (0.009) 
Lozi 0.04688 0.0130** 
 (0.056) (0.007) 
Nyanja 0.05083 0.0036 
 (0.055) (0.009) 
Tonga 0.06172 0.0060 
 (0.062) (0.008) 
   
Observations 6,416 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: Age, region, religion, and ethnicity are included in the regression but are not shown 
in the table 

 

Note to table 4: Each column is for the same regression where HIV consent is regressed on the X variables shown 
in the table and the corresponding average (in percent) for each interviewer. 
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Table 5 Marginal Effects for Heckman Selection Models (Men Zambia 2007) 

  Maximum Likelihood Maximum Likelihood Bayesian Average 
 Fixed Effects Random Effects Random Effects 

Variables 
Consent 
Equation 

HIV 
Equation 

Consent 
Equation 

HIV 
Equation 

Consent 
Equation 

HIV 
Equation 

              
Interviewer Effect    0.2845***  0.2857*** 
    (0.028)  (0.028) 
Years of Education 0.0046** 0.0012 0.0046** 0.0019 0.0047** 0.0020 
 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 
Wealth Category       
Poorest -0.0172 0.0486** -0.0199 0.0463** -0.0198 0.0451** 
 (0.020) (0.020) (0.020) (0.018) (0.020) (0.018) 
Poorer -0.0262 0.0528*** -0.0299 0.0479*** -0.0298 0.0465*** 
 (0.021) (0.020) (0.021) (0.018) (0.021) (0.018) 
Middle 0.0028 0.0645*** -0.0017 0.0630*** -0.0017 0.0620*** 
 (0.025) (0.024) (0.024) (0.022) (0.024) (0.021) 
Richer 0.0055 0.0503* 0.0072 0.0493* 0.0071 0.0485* 
 (0.031) (0.028) (0.030) (0.025) (0.030) (0.025) 
Location       
Small City 0.1529** -0.0589 0.1626** -0.0351 0.1622** -0.0308 
 (0.067) (0.045) (0.064) (0.035) (0.064) (0.032) 
Town 0.1605*** -0.0764** 0.1649*** -0.0495* 0.1647*** -0.0449* 
 (0.061) (0.038) (0.059) (0.027) (0.059) (0.024) 
Countryside 0.1911*** -0.1289*** 0.1972*** -0.0956*** 0.1967*** -0.0896*** 
 (0.063) (0.039) (0.059) (0.028) (0.059) (0.024) 
Marital Status       
Currently Married 0.0105 0.0787*** 0.0220 0.0791*** 0.0221 0.0779*** 
 (0.029) (0.030) (0.028) (0.027) (0.028) (0.027) 
Formerly Married -0.0146 0.2125*** -0.0093 0.1992*** -0.0096 0.1950*** 
 (0.028) (0.026) (0.028) (0.025) (0.028) (0.023) 
Had STD 0.0407 0.1079*** 0.0437* 0.1073*** 0.0437* 0.1064*** 
 (0.025) (0.023) (0.025) (0.019) (0.025) (0.019) 
Age at First Intercourse       
15 or Younger 0.0502** -0.0422 0.0485** -0.0254 0.0487** -0.0228 
 (0.022) (0.035) (0.021) (0.031) (0.021) (0.030) 
>15 0.0374* -0.0475 0.0356* -0.0334 0.0357* -0.0312 
 (0.022) (0.034) (0.021) (0.030) (0.021) (0.030) 
Had High Risk Sex 0.0531* -0.0275 0.0546** -0.0199 0.0544** -0.0184 
 (0.027) (0.025) (0.027) (0.022) (0.027) (0.021) 
Number of Partners       
1 -0.0433 -0.0202 -0.0520* -0.0266 -0.0521* -0.0272 
 (0.027) (0.029) (0.027) (0.026) (0.027) (0.025) 
2+ -0.0259 0.0343 -0.0371 0.0293 -0.0371 0.0282 
 (0.042) (0.039) (0.042) (0.034) (0.042) (0.033) 
Condom Last Intercourse -0.0079 0.0629*** -0.0017 0.0586*** -0.0014 0.0575*** 
 (0.016) (0.015) (0.015) (0.014) (0.015) (0.013) 
Would Care for HIV Relative 0.0487** 0.0170 0.0524*** 0.0285 0.0525*** 0.0298 
 (0.020) (0.033) (0.020) (0.030) (0.020) (0.029) 
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Know Someone Who Died of 
AIDS 0.0369*** -0.0144 0.0370*** -0.0081 0.0370*** -0.0070 
 (0.010) (0.014) (0.010) (0.011) (0.010) (0.011) 
Previously HIV Tested 0.0053 0.0340*** 0.0050 0.0333*** 0.0050 0.0328*** 
 (0.013) (0.013) (0.013) (0.011) (0.013) (0.011) 
Smoker 0.0371*** -0.0262* 0.0371*** -0.0197 0.0370*** -0.0183 
 (0.013) (0.016) (0.013) (0.013) (0.013) (0.013) 
Drinks Alcohol 0.0097 0.0186 0.0106 0.0184* 0.0105 0.0182* 
 (0.012) (0.012) (0.012) (0.011) (0.012) (0.011) 
Language       
English 0.0276 0.0028 0.0350 0.0075 0.0351 0.0081 
 (0.028) (0.033) (0.029) (0.029) (0.029) (0.029) 
Bemba 0.0953 0.0666 0.0916 0.0816* 0.0919 0.0826** 
 (0.061) (0.049) (0.058) (0.042) (0.058) (0.041) 
Lozi 0.0980*** -0.0076 0.0967*** 0.0079 0.0965*** 0.0099 
 (0.030) (0.031) (0.028) (0.026) (0.028) (0.025) 
Nyanja 0.1017** -0.0177 0.1133*** 0.0035 0.1132*** 0.0066 
 (0.046) (0.043) (0.036) (0.035) (0.036) (0.034) 
Tonga 0.0376 -0.0119 0.0453 -0.0132 0.0452 -0.0128 
 (0.048) (0.064) (0.051) (0.063) (0.051) (0.062) 
       
Observations 6,416 6,416 6,416 6,416 6,416 6,416 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Note to table 5: Controls for age, region, ethnicity, and religion are included in each regression equation but not 
shown. The model is a bivariate probit for HIV status and consent to a HIV test. Data are for men who completed an 
interview. The first model uses interviewer fixed effects as the exclusion restriction. The coefficients from the 
interviewer effects are not shown in the table (see figure 5). The second model uses the two step random effects 
procedure where HIV consent is regressed on the X variables, along with the mean values for each interviewer (see 
table 4). The average error term for each interviewer is added to the predicted value of the interviewer means, and 
used as the exclusion restriction in the HIV regression. The final model is the Bayesian averaging procedure using 
the same exclusion restriction. Coefficients are obtained by restricting the value of RHO to its Bayesian estimate and 
running the bivariate probit. Source: DHS Zambia 2007 (men). 
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Table 6 Correlation Coefficient Estimates for Men in Zambia 

Correlation Coefficient for Refused Consent Parameter Value Analytic 95% CI Bootstrap 95% CI 
Fixed Effects Model -0.7527 -0.9397 -0.2189   
Random Effects Model -0.5018 -0.7267 -0.1777 -0.6769 0.2282 
Bayesian  Average Model -0.4396     -0.6378 0.4319 

Note to table 6: The table shows the estimated correlation coefficient between consent and HIV status for the fixed 

effects, random effects and Bayesian average models. Analytic standard errors are shown for the fixed effects and 

random effects models, with bootstrapped errors for random effects and Bayesian average models. Source: DHS 

Zambia 2007 (men). 

Table 7 HIV Rate among Men who Refused to Test in Zambia 

HIV Rate for Refused Consent Parameter Value Analytic 95% CI Bootstrap 95% CI 
Fixed Effects Model 0.5195 0.4987 0.5404   
Random Effects Model 0.3203 0.3031 0.3376 0.0627 0.4268 
Bayesian Average Model 0.2860 0.2656 0.2977 0.0317 0.3977 
Imputation Model 0.1171 0.1078 0.1263     

Note to table 7: The table shows the estimated HIV prevalence rate among individuals who refused consent for the 

fixed effects, random effects and Bayesian average models. Analytic standard errors are shown for the fixed effects 

and random effects models, with bootstrapped errors for random effects and Bayesian average models. Also shown 

is the HIV rate using an imputation model for men who refused consent. Source: DHS Zambia 2007 (men). 

 

Table 8 HIV Rate among Men in Zambia 

HIV Rate  Parameter Value Analytic 95% CI Bootstrap 95% CI 
All Men - Fixed Effects Model  0.2013 0.1896 0.2130   
All Men - Random Effects Model  0.1627 0.1526 0.1728 0.1096 0.1842 
All Men - Bayesian Average Model 0.1552 0.1454 0.1650 0.1024 0.1789 
      
      
Men with Non-Missing Data 0.1213 0.1099 0.1327   
Men with No Contact - Imputation Model 0.1525 0.1424 0.1626   
All Men - Imputation Model 0.1233 0.1144 0.1322     

Note to table 8: The table shows the estimated HIV prevalence rate among the population for the fixed effects, 

random effects and Bayesian average models. Analytic standard errors are shown for the fixed effects and random 

effects models, with bootstrapped errors for random effects and Bayesian average models. Results from an 

imputation model are also shown, along with estimates only using those without missing data.  Source: DHS Zambia 

2007 (men). 
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Table 9 Marginal Effects from Probit for HIV Test Consent for Ghanaian Men 

  HIV Test Consent 
Variables Individual Level Variables Interviewer Level Averages 
   
Years of Education 0.00224* -0.0002 
 (0.001) (0.000) 
Wealth Category   
Poorest 0.09640*** 0.0136** 
 (0.016) (0.007) 
Poorer 0.08063*** 0.0200*** 
 (0.014) (0.001) 
Middle 0.05346*** 0.0417*** 
 (0.015) (0.007) 
Richer 0.03687*** 0.0376*** 
 (0.014) (0.006) 
Marital Status   
Currently Married 0.02424 -0.0035 
 (0.022) (0.004) 
Formerly Married -0.04371 0.0084 
 (0.028) (0.011) 
Had STD 0.03830* 0.0529*** 
 (0.021) (0.009) 
Age at First Intercourse   
Never Had Sex 0.00918 -0.0578*** 
 (0.021) (0.009) 
15 or Younger -0.02929 -0.0569*** 
 (0.018) (0.010) 
Had High Risk Sex 0.00272 0.0092 
 (0.019) (0.007) 
Number of Partners   
1 0.00304 -0.0331*** 
 (0.022) (0.005) 
2+ -0.00752 0.0218** 
 (0.031) (0.010) 
Condom Last Intercourse 0.00045 -0.1715*** 
 (0.017) (0.024) 
Would Care for HIV Relative 0.02213* 0.0124*** 
 (0.013) (0.001) 
Know Someone Died of AIDS 0.01538 -0.0424*** 
 (0.010) (0.006) 
Previously HIV Tested 0.00564 -0.0097*** 
 (0.017) (0.003) 
Smoker -0.00928 -0.0233*** 
 (0.017) (0.007) 
   
   
Language   
Akan 0.04955*** -0.0147*** 
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 (0.017) (0.001) 
Ga 0.06397** 0.0282*** 
 (0.026) (0.005) 
Ewe 0.02522 0.0175*** 
 (0.038) (0.005) 
Nzema 0.04300 0.0112* 
 (0.047) (0.007) 
Dagbani 0.01586 -0.0241*** 
 (0.049) (0.007) 
Other -0.03509  
 (0.030)  
   
Observations 4,955 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: Age, region, religion, and ethnicity are included in the regression but not shown in the 
table 

 

Note to table 9: Each column is for the same regression where HIV consent is regressed on the X variables shown 
in the table and the corresponding average (in percent) for each interviewer. 
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Table 10 Marginal Effects for Heckman Selection Models (Ghana 2003) 

  Maximum Likelihood Maximum Likelihood Bayesian Average 
 Fixed Effects Random Effects Random Effects 

Variables 
Consent 
Equation 

HIV 
Equation 

Consent 
Equation 

HIV 
Equation 

Consent 
Equation 

HIV 
Equation 

              
Interviewer Effect    0.2125***  0.2120*** 
    (0.020)  (0.020) 
Years of Education 0.0020 0.0004 0.0023* 0.0004 0.0023* 0.0004 
 (0.001) (0.000) (0.001) (0.000) (0.001) (0.000) 
Wealth Category       
Poorest -0.0187 0.0039 -0.0184 0.0039 -0.0184 0.0040 
 (0.020) (0.005) (0.019) (0.005) (0.019) (0.005) 
Poorer -0.0563*** 0.0078 -0.0553*** 0.0078 -0.0554*** 0.0079 
 (0.020) (0.006) (0.020) (0.006) (0.020) (0.006) 
Middle -0.0747*** 0.0017 -0.0769*** 0.0017 -0.0769*** 0.0018 
 (0.021) (0.006) (0.021) (0.006) (0.021) (0.006) 
Richer -0.1139*** 0.0021 -0.1169*** 0.0021 -0.1171*** 0.0023 
 (0.024) (0.007) (0.023) (0.007) (0.023) (0.007) 
Marital Status       
Currently Married 0.0241 0.0128 0.0235 0.0128 0.0237 0.0128 
 (0.022) (0.008) (0.022) (0.008) (0.022) (0.008) 
Formerly Married -0.0382 0.0088 -0.0420* 0.0087 -0.0418* 0.0088 
 (0.024) (0.008) (0.024) (0.008) (0.024) (0.008) 
Had STD 0.0461 0.0093 0.0457 0.0094 0.0456 0.0094 
 (0.029) (0.007) (0.028) (0.007) (0.028) (0.007) 
Age at First Intercourse       
15 or Younger 0.0502** -0.0422 0.0485** -0.0254 0.0487** -0.0228 
 (0.022) (0.035) (0.021) (0.031) (0.021) (0.030) 
>15 0.0374* -0.0475 0.0356* -0.0334 0.0357* -0.0312 
 (0.022) (0.034) (0.021) (0.030) (0.021) (0.030) 
Had High Risk Sex 0.0531* -0.0275 0.0546** -0.0199 0.0544** -0.0184 
 (0.027) (0.025) (0.027) (0.022) (0.027) (0.021) 
Number of Partners       
1 0.0040 -0.0100 0.0033 -0.0100 0.0032 -0.0101 
 (0.022) (0.007) (0.022) (0.007) (0.022) (0.007) 
2+ -0.0064 -0.0178* -0.0068 -0.0180* -0.0069 -0.0180* 
 (0.031) (0.011) (0.030) (0.011) (0.031) (0.011) 
Condom Last Intercourse 0.0001 0.0083* -0.0000 0.0082* -0.0000 0.0083* 
 (0.018) (0.004) (0.018) (0.004) (0.018) (0.004) 
Would Care for HIV Relative 0.0221* -0.0007 0.0230* -0.0007 0.0229* -0.0007 
 (0.013) (0.004) (0.012) (0.004) (0.012) (0.004) 
Know Someone Who Died of 
AIDS 0.0163 -0.0009 0.0162 -0.0010 0.0161 -0.0009 
 (0.011) (0.003) (0.011) (0.003) (0.011) (0.003) 
Previously HIV Tested 0.0040 -0.0054 0.0046 -0.0054 0.0049 -0.0056 
 (0.018) (0.007) (0.018) (0.007) (0.018) (0.007) 
Smoker -0.0103 0.0057 -0.0089 0.0057 -0.0089 0.0058 
 (0.017) (0.004) (0.017) (0.004) (0.017) (0.004) 
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Language       
Akan 0.0474*** 0.0042 0.0513*** 0.0043 0.0511*** 0.0044 
 (0.017) (0.004) (0.016) (0.004) (0.016) (0.004) 
Ga 0.0766* 0.0009 0.0864** 0.0010 0.0858** 0.0010 
 (0.045) (0.013) (0.044) (0.013) (0.044) (0.013) 
Ewe 0.0338 0.0122 0.0272 0.0122 0.0271 0.0123 
 (0.045) (0.009) (0.045) (0.009) (0.045) (0.009) 
Nzema 0.0537 0.0253* 0.0484 0.0253* 0.0489 0.0254* 
 (0.060) (0.015) (0.052) (0.015) (0.052) (0.015) 
Dagbani -0.0201 -0.1142*** 0.0187 -0.1387*** 0.0186 -0.8298*** 
 (0.063) (0.018) (0.038) (0.021) (0.038) (0.084) 
Other -0.0391 -0.0102 -0.0327 -0.0102 -0.0328 -0.0102 
 (0.027) (0.009) (0.025) (0.009) (0.025) (0.009) 
       
Observations 4,955 4,955 4,955 4,955 4,955 4,955 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Note to table 10: Controls for age, region, ethnicity, and religion are included in each regression equation but not 
shown. The model is a bivariate probit for HIV status and consent to a HIV test. Data are for men only. The first 
model uses interviewer fixed effects as the exclusion restriction. The coefficients from the interviewer effects are not 
shown in the table (see figure 9). The second model uses the two step random effects procedure where HIV consent 
is regressed on the X variables, along with the mean values for each interviewer (see table 9). The average error 
term for each interviewer is added to the predicted value of the interviewer means, and used as the exclusion 
restriction in the HIV regression. The final model is the Bayesian averaging procedure using the same exclusion 
restriction. Coefficients are obtained by restricting the value of RHO to its Bayesian estimate and running the 
bivariate probit. Source: DHS Ghana 2003 (men). 
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Table 11 Correlation Coefficient Estimates for Men in Ghana 

Correlation Coefficient for Refused Consent Parameter Value Analytic 95% CI Bootstrap 95% CI 
Fixed Effects Model 0.9452 -0.0514 0.9986   
Random Effects Model 0.9332 0.0197 0.9978 0.5603 0.9999 
Bayesian Average Model 0.5927     0.3856 0.7184 

Note to table 11: The table shows the estimated correlation coefficient between consent and HIV status for the fixed 

effects, random effects and Bayesian average models. Analytic standard errors are shown for the fixed effects and 

random effects models, with bootstrapped errors for random effects and Bayesian average models. Source: DHS 

Ghana 2003 (men). 

 

Table 12 HIV Rate among Men who Refused to Test in Ghana 

HIV Rate for Refused Consent Parameter Value Analytic 95% CI Bootstrap 95% CI 
Fixed Effects Model 0.0000 0.0000 0.0000   
Random Effects Model 0.0000 0.0000 0.0000 0.0000 0.0016 
Bayesian Average Model 0.0007 0.0005 0.0009 0.0003 0.0035 
Imputation Model 0.0182 0.0160 0.2048     

Note to table 12: The table shows the estimated HIV prevalence rate among individuals who refused consent for the 

fixed effects, random effects and Bayesian average models. Analytic standard errors are shown for the fixed effects 

and random effects models, with bootstrapped errors for random effects and Bayesian average models. Source: DHS 

Ghana 2003 (men). 

 

Table 13 HIV Rate among Men in Ghana 

HIV Rate  Parameter Value Analytic 95% CI Bootstrap 95% CI 
All Men - Fixed Effects Model  0.0138 0.0105 0.0171   
All Men - Random Effects Model  0.0138 0.0105 0.0171 0.0116 0.0162 
All Men - Bayesian Average Model 0.0139 0.0106 0.0172 0.0115 0.0163 
      
      
Men with Non-Missing Data 0.0161 0.0120 0.0202   
Men with no contact - Imputation Model 0.0157 0.0137 0.0177   
All Men - Imputation Model 0.0164 0.0131 0.0197     

Note to table 13: The table shows the estimated HIV prevalence rate among the population for the fixed effects, 

random effects and Bayesian average models. Analytic standard errors are shown for the fixed effects and random 

effects models, with bootstrapped errors for random effects and Bayesian average models. Results from an 

imputation model are also shown, along with estimates only using those without missing data.  Source: DHS Ghana 

2003 (men). 



41 

 

Figures 

Figure 1 Number of Interviews by Interviewer Zambia 2007 (Men) 

 

Note to Figure 1: Graph is at the interviewer level (one observation per interviewer). 
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Figure 2 Success Rate of Interviewers Zambia 2007 (Men) 

 

Note to Figure 2: Graph is at the interviewer level (one observation per interviewer). 
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Figure 3 Number of Interviews by Interviewer Ghana 2003 (Men) 

 

Note to Figure 3: Graph is at the interviewer level (one observation per interviewer). 
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Figure 4 Success Rate of Interviewers Ghana 2003 (Men) 

 

Note to Figure 4: Graph is at the interviewer level (one observation per interviewer). 
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Figure 5 Random Effects from Probit for Consent Zambia 2007 (Men) 

 

 

 

Note to Figure 5: Random effects are calculated as the average error term for each interviewer from a probit 
regression for HIV consent, including the interviewer average of each variable. See table 4. Graph is at the 
interviewer level (one observation per interviewer). 
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Figure 6 Interviewer Fixed Effect Coefficients Density Plot for Consent to HIV Test in Zambia (Table 5) 
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Figure 7 Bayesian Model Averaging Posterior for RHO Zambia 2007 (Men) 

 

Note to Figure 7: Graph shows the posterior for RHO calculated using Bayesian averaging with interviewer random 

effects as the exclusion restriction. Bayesian averaging is performed over selection models with interviewer effects 

as the exclusion restriction. Random effects are obtained as the average error from a probit for consent. Also shown 

are the 95% bootstrapped confidence interval for the Bayesian average estimate, and the point estimate for the 

random effects maximum likelihood estimate for comparison. The bootstrap confidence interval is calculated using 

the empirical distribution of bootstrap estimates. Source: DHS Zambia 2007 (men). 
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Figure 8 Random Effects from Probit for Consent Ghana 2003 (Men) 

 

Note to Figure 8: Random effects are calculated as the average error term for each interviewer from a probit 
regression for HIV consent, including the interviewer average of each variable. See table 9. Graph is at the 
interviewer level (one observation per interviewer). 
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Figure 9 Interviewer Fixed Effect Coefficients Density Plot for Consent to HIV Test in Ghana (Table 10) 
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Figure 10 Bayesian Model Averaging Posterior for RHO Ghana 2003 (Men) 

 

Note to Figure 10: Graph shows the posterior for RHO calculated using Bayesian averaging with interviewer 

random effects as the exclusion restriction. Bayesian averaging is performed over selection models with interviewer 

effects as the exclusion restriction. Random effects are obtained as the average error from a probit for consent. Also 

shown are the 95% bootstrapped confidence interval for the Bayesian average estimate, and the point estimate for 

the random effects maximum likelihood estimate for comparison. The bootstrap confidence interval is calculated 

using the empirical distribution of bootstrap estimates. Source: DHS Ghana 2003 (men). 
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Appendix 

 

The concentrated likelihood function 

The likelihood of the parameters (βୱ, β୦, ρ)  given the full data set ( , , )y x z is  

,௦ߚ)ܮ ௛ߚ , (ߩ = ,ݕ)ܲ ,ݔ ,௦ߚ|ݖ ,௛ߚ  (9)  (ߩ

For a given ρ we can concentrate the likelihood function by setting the other parameters at their 

maximum likelihood values given ρ: 

(ߩ)௖ܮ  = ܲ൫ݕ, ,ݔ ௦෡ߚหݖ ,(ߩ) ,(ߩ)௛෢ߚ ൯ߩ ≈ ,ݕ)ܲ ,ݔ  (10)  (ߩ|ݖ

In large samples the approximation to ܲ(ݕ, ,ݔ  will become exact as the maximum likelihood (ߩ|ݖ

estimates of the other parameters are consistent. Using the concentrated maximum likelihood the 

problem is reduced to a one parameter model and we can carry out our Bayesian averaging 

approach with a prior over ρ alone. 

 

 

 

 

 

 

 

 


