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Abstract

We develop a simple model of health and human capital formation that takes
into account the dynamic interaction between genetic inheritance and parental
choices of investment in children. Differences in the genetic makeup of children
induce variations in the shadow cost of inputs in the production function of hu-
man capital, and in equilibrium this is mirrored by changes in the returns to
investment. We take this model to the data using the Avon Longitudinal Study
of Parents and Children and we focus on a particular facet of health: obesity.
Different forms of investment are considered as inputs, notably physical exercise
and dietary intake, and we evaluate their interaction with various genes which
has been associated to increases in Body Mass Index in Genome-Wide Associa-
tion Studies. Once we control for the environmental pathways that connect the
genetic endowment to obesity, we find that allelic variations are not significant
anymore in explaining Body Mass Index (BMI), while Gene-Environment inter-
action (GxE) plays a fundamental role. We also find that children who tend to
exercise are less affected by the presence of obesity-related alleles, while those who
eat a less healthy diet are more susceptible to this genetic liability. These results
are consistent with the findings in molecular biology showing that certain genes
are associated with the hypothalamic regulation of food intake, and shed light
on the interdependence between genes and economic choices regarding parental
investment and human capital formation.

∗Department of Economics, University of Chicago, 1126 East 59th Street,Chicago, IL 60637; email,
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“Nature makes the boy toward, nurture sees him forward” Mulcaster
(1582)

1 Introduction

The goal of this paper is to understand how economic choices of investment in the
child’s capabilities build on and interact with her genetic endowment in order to enable
the full flourishing of her innate ability. Only through a sequence of targeted choices
and investments aimed at developing a particular talent can an individual fully excel
later in life.

This idea is nested within the debate on “nature vs nurture”, which has long been
discussed both in social and biological sciences. It was initially framed as an antagonistic
relationship by Francis Galton (1874), who believed genetic inheritance to play the
stronger role. “When nature and nurture compete for supremacy on equal terms in the
sense to be explained, the former proves to be the stronger.” (Galton, 1874, p. 12)
On the other side in The Wealth of Nations Adam Smith (1776) argues the opposite,
suggesting that observed differences are due to specialization and division of labor,
rather than arising from natural talents.

“The difference of natural talents in different men is, in reality, much
less than we are aware of; and the very different genius which appears to
distinguish men of different professions, when grown up to maturity, is not
upon many occasions so much the cause, as the effect of division of labour.
The difference between the most dissimilar characters, between a philoso-
pher and a common street porter, for example, seems to arise not so much
from nature, as from habit, custom, and education. When they come into
the world, and for the first six or eight years of their existence, they were,
perhaps, very much alike, and neither their parents nor play-fellows could
perceive any remarkable difference.” (Smith, 1776, pp.28-29)

Since then, a wide literature in behavioral genetics has tried to parse out the relative
importance of these two components in determining any particular human trait, usually
comparing identical and non-identical twins. A very coarse additive model that assigns
unique variances to both genes and environments is imposed in order to determine the
precise percentage of a particular trait that is ‘heritable’1. For example, it has been
estimated that roughly 80% of the variation in human height can be attributed to
genetic inheritance (Yang et al. (2010)), that 28 to 85% of IQ is heritable (van der Sluis
et al. (2008)), or that 16-85% of Body Mass Index is due to genes (Yang et al. (2007)),

1See (?, ch. 5) for a textbook description of the main models. A critique of the main assumptions
of the these analysis has been provided by Goldberger (1976, 1979) and Manski (2011). A bivariate
extension than joins research from social and biological sciences has been proposed in Kohler et al.
(2011), who discuss at length the necessary identifying conditions.
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while the rest is due to environment . In a horse race between the two, they tried to
pick a winner.

We argue that such an antagonistic relationship is ill-posed and obsolete, and should
be relinquished in favor of a more systemic view that considers the dynamic interac-
tion between the genetic endowment of an individual, and the social, biological, and
economic environment in which she grows and develops. This perspective conforms
with the original idea of Richard Mulcaster, who first spoke of nature and nurture in
more harmonious terms, stressing their collaborative effects; this view has recursively
been put forth by other scholars, like Anastasi (1958), and more recently by Rutter
(2006) and Heckman (2007), and it is deeply rooted in the evidence accumulated in
molecular biology. Recent technological advances in the mapping of the genome al-
lowed researchers to connect various human traits to specific genetic markers; through
appropriate statistical models and using Genome-Wide Association Studies (GWAS),
they contributed to our understanding of the genetic underpinning of human behav-
iors and characteristics. At the same time, the epigenetic work of Meany, Syzf and
colleagues (Meaney and Szyf (2005); Meaney (2010); Szyf and Bick (2013)) has shown
how the genetic endowment of an individual actively interacts and is shaped by the
surrounding environment through the process of gene expression and DNA methyla-
tion, validating the claim that the environment gets under your skin. These strands
of research combined gave a strong biological foundation for a better understanding of
behavioral genetics and the development of studies regarding Gene-Environment inter-
action (GxE) and Gene-Environment correlation (rGE)2. This could explain why, for
example, we have witnesses a dramatic increase in obesity rates in the recent decades,
even though obesity has been estimated to be highly heritable, and the genetic pool of
the population has not changed.

We contribute to the debate by introducing a framework for understanding how
families shape the environment and make decisions on how to invest in the capabilities
of children, so as to develop their full genetic potential while facing limits on the time
and the resources available.

In order to achieve this goal, we develop a simple model of health and human capital
formation that takes into account the dynamic interaction between genetic inheritance,
and family choices of investment. The foundational conjecture is to consider the ge-
netic code of an individual as delimiting the possibility set of every agent. The DNA is
therefore modeled as a biological shifter of the individual cost of investments.In other
words, the genetic endowment of an individual delineates the set of achievable combi-
nation of inputs (investments) and outputs (human capital) that an agent can attain3;
therefore a particular genetic makeup that has been related to a certain trait, such as

2These terms were initially introduced by Plomin et al. (1977)
3(Mas-Colell et al., 1995, chap 5b) define the production set as “The set of all production vectors

that constitute feasible plans for the firm. [...] The production set is taken as a primitive datum of
the theory”. In this case the firm is the family, and the production vector is composed of investments
and human capital.
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cognitive ability4, would entail a larger production set available to the individual and
better chances to attain a higher cognitive standing; however the actual achievement of
such ability would depend on the sequence of economic choices and family investments
undertook in order to develop that particular trait.

This puts some structure on how the genetic potential of an individual interacts
with the budget constraint faced by the family when making decisions about how to
invest in the child, and generates some predictions that can be tested by the data.

Considering various types of investments, we evaluate how differences in the genetic
makeup of the child induce variations in the shadow cost of inputs, and in equilibrium
this is mirrored by changes in the returns to investments and the optimal allocation of
resources within the family.

Drawing a connection with the household production model developed by Becker,
the genetic endowment would be considered as an ‘environmental variable’ which in-
fluences the efficiency of the household production function but not its preferences; as
explained in (Becker, 2007, p.48), such variables “reduce the cost of producing commodi-
ties, and thus would expand opportunities, even if the full income were not affected”.

We test the prediction of the model using the Avon Longitudinal Study of Parents
And Children (ALSPAC), a very rich epidemiological dataset that followed prospec-
tively a birth cohort recruited in Avon, UK, in 1991/1992.

We focus our attention on a particular facet of health capital: obesity. A trait
that has been reliably and consistently measured over time, it has become of prime
importance due to the recent rise in the obesity epidemics, especially in children. Ogden
(2002) show how obesity rates of children aged 2 to 5 doubled from the early 1970s to
2000, going from a prevalence of 5% to 10.4%, and tripled for children aged 6 to 19, from
5% to 15%. Furthermore, Cawley (2010) shows how both direct and indirect costs of
obesity are considerable: childhood obesity costs $14.3 billion a year due to prescription
drugs, emergency room, inpatient and outpatient costs; the figure for adults is 10 times
greater, with an estimated $147 billion spent in obesity related illnesses. The indirect
costs of obesity range from delayed skills acquisition, to lower wages, job absenteeism,
and lower productivity.

Finally, we chose it because it has a strong biological underpinning that has been
connected to various genetic markers, but at the same time the level of fitness of our
body can be affected by both social and economic choices, such as diet and exercise.

To guide the empirical analysis we focus on precise measures of genes and envi-
ronment5. We leverage the findings in molecular biology showing how minor variants

4See Davies et al. (2011); Butcher et al. (2006) for a discussion of the genes that have been associated
with IQ and cognitive functioning

5We follow the suggestions of Moffitt et al. (2005) and Purcell (2002) who point out how considering
genes and environment as latent variables still potentially allows for detection of GxE, but suffers from
low power, is sensitive to non-normality of the trait, and most importantly does not shed any light on
the underlying processes. On the other side, using well defined measures of gene and environment is
more sensible both from a statistical perspective - it provides the most power for detecting GxE - as
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in the FTO gene (rs9939609 Single Nucleotide Polymorphism) are associated with hy-
pothalamic regulation of energy intake but not energy expenditure. In other terms, this
particular gene has been linked to biological mechanisms in the brain that determine
the control of appetite and feeding impulses, but it has not been associated with dif-
ferences in metabolic rates. Therefore the presence of minor-allele variants of this gene
increases the (psychological) cost of following a strict diet, but leaves the incentives to
engage in physical activity unaltered.

This intuition is corroborated by our results: we find strong evidence in support
of the interaction between the FTO gene and the quantity of food that children eat;
furthermore, we also find evidence of interplay between genetic endowment and phys-
ical activity, albeit to a minor extent. While the gene is connected, on average, to
higher levels of Body-Mass-Index (BMI), controlling for the environmental pathways
that connect FTO to obesity, we find that allelic variations are not significant anymore
in explaining adiposity. Therefore, the presence of a different genetic makeup does not
predestine the child to be overweight, but rather her level of health is conditional on the
family choices in the realm of diet and exercise. Furthermore I find some preliminary
evidence on the substitution between these two investment decisions: children who are
endowed with the minor variant of the FTO gene tend to have a higher food intake on
average, but the effect on obesity rates is mitigated by their exercise choices.

2 The Model

We consider a simple model of health and human capital formation where the family
have to decide between consumption and investment. We analyze a simple static model
to derive the basic predictions and build some intuition.

The family solves the following utility maximization problem, subject to the time
and income constraint and the production function of health and investment:

max
xe,xd,{τk}dk=e,c

U(c, τl, H) (1)

s.t.

Ω = τl + τe + τd

Y = pcc+ pdxd + pexe

H = f (Id, Ie; g)

Ie = Ie (xe, τe; g)

Id = Id (xd, τd; g)

well as from the analytical perspective, since it sheds light on the biological and causal links connecting
endowment, choices, and the final outcome
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where H is the stock of health (or human capital), which arises according to the
production function f(.), a function of different types of investments - in this case we
consider two potential investment, exercise Ie and diet Id. Ω is the total amount of time
and energy that the person can choose to allocate to leisure τl, exercise τe, and effort
spent following a diet τd; Y is income, which can be allocated to either consumption
c or investments x, according to their relative prices pk. Investments are a function of
the time τ and the goods x devoted to them, as well as the genetic endowment g of the
individual.

This is the fundamental assumption of our model: genes enter not only the produc-
tion function of human capital, but also the investment functions: a different genetic
makeup will induce variations in the rate of conversion of effort and goods into invest-
ments, and not only the substitutability between and effectiveness of different inputs
into the production function of human capital. Therefore having a particular genetic en-
dowment will impact the incentives that people face when making investment decisions,
shifting their cost functions.

A very good example of this come from the analysis of a particular gene that has
been associated to obesity, FTO. Various studies have shown how this gene is associ-
ated to obesity through the regulation of hunger and feeding patterns, and not energy
expenditure6. For example Fredriksson et al. (2008) find that “detailed in situ hy-
bridization analysis in the mouse brain showed abundant expression in feeding-related
nuclei of the brainstem and hypothalamus, such as the nucleus of the solitary tract,
area postrema, and arcuate, paraventricular, and supraoptic nuclei as well as in the
bed nucleus of the stria terminalis. [...] The FTO was significantly up-regulated (41%)
in the hypothalamus of rats after 48-h food deprivation.” They conclude that “These
results are consistent with the hypothesis that FTO could participate in the central
control of energy homeostasis.” Similarly, Olszewski et al. (2009) anlyze the level of
gene expression in the brain of mice experimentally deprived of food and find that
“FTO mRNA is present mainly in sites related to hunger/satiation control; changes in
hypothalamic FTO expression are associated with cues related to energy intake rather
than feeding reward. In line with that, neurons involved in feeding termination express
FTO”. Cecil et al. (2008) analyze 2,726 Scottish children, 4 to 10 years of age, and find
that the “A allele was associated with increased energy intake (P = 0.006) indepen-
dently of body weight”, but it had no visible effect on reting energy expenditure and
metabolism. Using our same dataset, Timpson et al. (2008) found the same effect of
the A-allele of the FTO gene on increased total energy and total fat intake, conditional
on BMI.

Similar biological connections have been found for other genes, such as MC4R,
BDNF, SH2B17.

6See also Speakman et al. (2008); Fawcett and Barroso (2010); Wardle et al. (2008); Yeo and
O’Rahilly (2012); Timpson et al. (2008); Cecil et al. (2008).

7See Huszar et al. (1997); Govaerts et al. (2005); Qi et al. (2008); Valette et al. (2012) for mice-
knock-out models as well as human evidence of the relation between the melanocortin-4 receptor
(MC4R) and excessive feeding (hyperphagia), high levels of insulin and blood sugar (hyperinsulinemia
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In terms of our model, this means that being a carrier of the FTO-A alleleincreases
the cost of following a strict diet, ∂Id(xd,τd,g)

∂gFTO
< 0, but has no effect on the exercise

function, so that ∂Ie(xe,τe,g)
∂gFTO

= 0.

The first order condition of the model, as detailed in appendix A, are:

∂f(Id,Ie,g)
∂Ie(xe,τe,g)

∂Ie(xe,τe,g)
∂xe

pe
=

∂f(Id,Ie,g)
∂Id(xd,τd,g)

∂Id(xd,τd,g)
∂xd

pd

Or
∂f(Id,Ie,g)
∂Ie(xe,τe,g)

∂Ie(xe,τe,g)
∂xe

∂f(Id,Ie,g)
∂Id(xd,τd,g)

∂Id(xd,τd,g)
∂xd

=
pe
pd

Rearranging the terms we obtain:

∂f(Id,Ie,g)
∂Ie(xe,τe,g)

∂f(Id,Ie,g)
∂Id(xd,τd,g)

=
pe/

∂Ie(xe,τe,g)
∂xe

pd/
∂Id(xd,τd,g)

∂xd

f ′Ie
f ′d

=
pe/I

′
e

pd/I ′d
=
p′e
p′d

(2)

Where f ′Ik = ∂f(Id,Ie,g)
∂Ik(xk,τk,g)

is the marginal productivity of investment k, while pk′ =

pk/I
′
k represents its shadow cost.

Since the genetic endowment of the agents enter the investment functions Ie(.) and
Id(.), by changing the genes we have a variation in the shadow price of inputs p′k and,
therefore, a change in the returns to investment. In the example of the FTO gene we
can say that having at least one A allele, instead of a T allele, increases the cost of diet,
p′d(AFTO) > p′d(TFTO), but has no effect on the price of exercise, p′e(AFTO) = p′e(TFTO).
This will reflect in a shift in the budget set and, consequently, in a change of optimal
allocation of both diet and exercise, as shown in Figure 1.

Therefore the predictions of the model are that a change in the genetic endowment
of the child (say being born with an A allele instead of a T allele in the FTO rs9939609
gene-locus) will lead to a lower level of diet and, consequently, to a lower level of health
(higher BMI). The effect on the optimal level of activity are not so straightforward:
the restriction in the budget set will lead to a reduction in the optimal activity level;
on the other side, the increased price of the other input might lead to a substitution
effect toward exercise, which is now a relatively cheaper investment choice. Indeed, the
higher is the use of the cheaper input Ie, the lower will be the effect of the FTO gene on

and hyperglycemia), and increase in food consumption; Gray et al. (2006); Unger et al. (2007) highlight
the links between inhibition of food intake, energy homeostasis and the expression of brain-derived
neurotrophic factor (BDNF) in the hypothalamus; Bochukova et al. (2010); Li et al. (2007); Ren et al.
(2007) explain the relation between leptin, the SH2B1 gene, and eating and obesity. Finally Beckers
et al. (2009) overviews the literature on the genetic basis of the leptin-melanocortin pathway to obesity
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the observed level of health and BMI. Take an extreme example of a sportsman, who
eats as much as he sees fit whenever he is hungry: the effort spent on diet is minimal, so
that I∗d ≈ 0, but the amount of physical activity is very high; in this case, a difference
in the genetic endowment would be barely noticeable on his obesity level.

Figure 1: Effect of Genes on the Production Function of Health

However the genes enter also the production function of health, f(.). In order to
obtain clear implications, we have to assume that the impact of genes on the production
function ∂f

∂g
, which can call the productivity effect, does not counterbalance the price

effect ∂pe(g)
∂g

. A sufficient condition is for genes not to interact with the investments,

so that the ratio of partial derivatives ∂f(Id,Ie,g)
∂Ie

/∂f(Id,Ie,g)
∂Id

does not depend on g. For

example, this is the case if the cross partials are equal to zero, ∂f(Id,Ie,g)
∂Ie∂g

= ∂f(Id,Ie,g)
∂Id∂g

= 0.
This is consistent with the assumption that the family does not know the genetic

endowment of the child, since it is not (easily) observable. However they do know
the production functions and they observe the shadow prices of the investments: that
is, they are aware of how hard or easy it is for the child to exercise and to follow a
nutritious diet.

However we can be more general; since the FOC must hold ∀g, we can derive a more
general condition by taking the derivative with respect to g, obtaining:

∂f(Id,Ie,g)
∂Ie∂g

∂f(Id,Ie,g)
∂Id

− ∂f(Id,Ie,g)
∂Id∂g

∂f(Id,Ie,g)
∂Ie[

∂f(Id,Ie,g)
∂Id

]2 =
p′epd − pep′d

[pd]
2

therefore we have that the productivity effect does not overturn the price effect if the
sign of the right hand side of the equation is the same as the sign of the difference

between the two sides, or if |p′epd − pep′d| >
∣∣∣∂f(Id,Ie,g)∂Ie∂g

∂f(Id,Ie,g)
∂Id

− ∂f(Id,Ie,g)
∂D∂g

∂f(Id,Ie,g)
∂Ie

∣∣∣
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3 Empirical Results

3.1 The Data

To bring the model to the data, I use the Avon Longitudinal Study of Parents and Chil-
dren (ALSPAC), an ongoing investigation on the health and development of children
(http://www.alspac.bris.ac.uk). An extremely rich dataset collected by epidemi-
ologic researchers from the University of Bristol, the ALSPAC follows prospectively a
cohort of pregnant women living in a district in the former County of Avon with an
expected delivery date between April 1991 and December 1992 (Golding et al. (2001)).
14,541 pregnant women were enrolled at the beginning of the study; 13,988 children
were alive at year 1.

Health data were collected through regular questionnaires, and medical and educa-
tional records. Anthropometric, Physical Activity, and dual-energy X-ray absorptiom-
etry (DXA) measures were obtained during research clinic visits.

Anthropometric measures
Height was measured by using a Harpenden stadiometer (Holtain Ltd, Crymych,

United Kingdom), and weight was assessed by using a weighing scale (Tanita TBF 305;
TanitaUKLtd,Yewsley, United Kingdom). A Lunar Prodigy DXA scanner (GE Medical
Systems Lunar, Madison, WI) provided measures of body composition, including fat,
lean body mass, and bone mass. Body mass index (BMI = weight (kg)/height squared
(m2)), and BMI normal z-scores were calculated from the 1990 British Growth Ref-
erence8. Although multiple measure of obesity are provided, we mostly focus on BMI
because it was most frequently measured, easily comparable to many other studies, and
provides an easy yet reliable measure of obesity risk9.

Dietary assessment
Three-day dietary records including 2 weekday and 1 weekend day were obtained

from adolescents a few days before the clinic visit; parents provided assistance as needed.
Participants were instructed to record all foods and beverages consumed by using stan-
dard household measures. Records were reviewed during clinic visits to improve com-
pleteness. Questionnaires queried for information on vitamin supplements, type of milk
or fat spreads consumed, and details of other foods commonly eaten. Diet records were
coded and analyzed by using the Diet In Data Out software (MRC Human Nutrition
Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom), which generates
food codes and weights of each item recorded (Price et al. (1995)). Average daily nutri-
ent intakes were calculated by using BRIGADE (University of Bristol, Bristol, United
Kingdom) - a nutrient analysis program based on a nutrient databank that included
the fifth edition of McCance and Widdowson’s food tables and supplements. Nutrients
for foods not in the databank were obtained from the National Diet and Nutrition Sur-

8See Cole et al. (1998)
9See Taylor et al. (2010) for a discussion of the reliability of BMI in predicting coronary heart

disease, diabetes, and all-cause mortality, as compared to other measures of adiposity.

9
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vey nutrient databases or calculated from the manufacturers label. Food groups were
formed on the basis of nutrient composition and culinary use of foods consumed. Dairy
and milk groups were categorized into full-fat, low-fat, and nonfat on the basis of fat
content. Total milk intake included full-fat, low-fat and nonfat plain and flavored milk.
Total dairy intake included milk, cheese, cream, and yogurt; butter was not included.

Physical activity
The Actigraph uni-axial accelerometer (Actigraph, Fort Walton Beach, FL) was

used to measure physical activity (Mattocks et al. (2008)). The accelerometer, which is
worn around the waist, captures the frequency and intensity of movement in the vertical
plane. Adolescents were asked to wear the accelerometer for 7 days during waking hours
and to remove the instrument only during showering, bathing, and swimming. Physical
activity measured directly from accelerometers (not including time spent swimming
or cycling) was used. The accelerometers used in this study measured 1-min epochs.
Adolescents with more than 3 days of accelerometer data were included in the analyses.
Variables derived from the Actigraph were counts per minute as an estimate of total
activity, minutes of sedentary activity, and minutes of moderate-to-vigorous activity
(MVPA). On the basis of the results from a calibration study (Mattocks et al. (2008)),
daily minutes of MVPA were defined by using cutoffs developed for moderate activity
(accelerometer output between 3600 and 6200 counts/min) and vigorous activity (more
than 6200 counts/min); time spent performing MVPA were summed to quantify minutes
of MVPA.

3.2 Evidence of interplay between genes and investment

First of all we look at the raw data and analyze the evolution of BMI over time, dif-
ferentiated by gender; we compare the evolution of obesity between children who carry
at least one risky A-allele in the FTO rs9939609 polymorphism (therefore those who
are homozygous AA carries, or heterozygous AT) and those who don’t (and therefore
are homozygous TT carriers). As we can see in Figure 2, while in the first 5-6 years of
their life there is no statistical difference between the two types, as children get older
the distance between the two groups increases and then remains constant. This is a
confirmation that in our dataset the FTO-gene has a significant effect on Body Mass
Index, but that such effect is not present since birth, but actually arises as the child
grows. This is consistent with the idea that the mere presence of the A-allele in not
sufficient to induce a higher level BMI, but rather that the impact of the gene becomes
pronounced as the effect of environment accumulates over time.

We now turn to the interaction between the genetic endowment of the child and
the investment decisions of the family: the so-called Gene-Environment interaction
(GxE)10.

10The term was initially introduce by Plomin et al. (1977), and it is well explained in Moffitt et al.
(2005, 2006) and in (Rutter, 2006, ch.9)
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Figure 2: Evolution of Body-Mass-Index

Analyzing Id by gender and genetic endowment, we use the data from the dietary
questionnaires to investigate the relationship between the logarithm of the total amount
of energy intake (kilo-calories per day) and the obesity level of the children aged 10 to
14 years old11. Not surprisingly, Figure 3 shows that higher energy intake is related to
higher levels of BMI; furthermore, as predicted by the model, those children who carry at
least one A-allele have a higher level of energy intake on average.The most interesting
feature, however, is the significant difference in the slope describing the relationship
between diet and BMI, and the fact that the two slopes intercept: genetic differences
between children lead to differences in BMI only when they are abundant eaters. In
other words, the impact of genes is conditional on a particular environment: the effect
on the obesity-related-phenotype is evident only when both genes and environment are
present and interact.

Figure 3: Gene-Diet Interaction: the Effect of energy intake on BMI

11Reliable data on food intake is limited to the clinical visits that started at those ages
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A similar results can be found by analyzing the level of physical activity and exercise
chosen by the adolescents, as depicted in Figure 4. The effect, as expected, is less
pronounced; however we can still find very similar features: more time spent in a
sedentary lifestyle leads to an increase in BMI, but significantly more so for those
children who happen to carry the risky A-allele. Furthermore, the difference between
the two types of children cannot be detected at low levels of sedentary activity (a high
level of exercise), but only at higher ones, as predicted by the simple economic model.

Figure 4: Gene-Activity Interaction: the Effect of physical activity on BMI

3.3 A Linear Production Function of Health

We now turn to the estimation of the production function of health. Following Ehrlich
and Chuma (1990) as well as Galama et al. (2012); Galama (2011), we consider a model
that allows for decreasing returns to scale in investment: Ht = A(X)

(
Iαee,t I

αd
d,tg

αg
)
; we

log-linearize the function and allow for interplay between genes and investment by
introducing an interaction term between g and both Id,t and Ie,t; finally we consider
the persistence of health capital by introducing (1− δ)Ht−1, where δ is the depreciation
rate of the health stock, represented in our case by BMI. Therefore we estimate the
following equation:

log(Hi,t) = µ+ αelog(Iei,t) + αdlog(Idi,t) + αgg+

+ αGxElog(Iei,t) · g + αGxDlog(Idi,t) · g + (1− δ)log(Hi,t−1)

+ γgg
mom
i + γhlog(Hmom

i ) + βXi,t + κt + µi + εi,t (3)

where gmom,i and log(BMI)mom,i represent the genetic endowment of the mother and
her weight before pregnancy; Xit are control variables introduced to proxy for family
and individual specific characteristics that might influence obesity and investment12; κt

12We control for the age of the child at the clinic visit; the child’s birth weight, as a proxy of
prenatal investment; mother age at conception; dummies for different levels of mother and father
Socio-Economic-Status and education levels; a dummy for teen-pregnancy; child parity
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captures time effect and µi random effects idiosyncratic to the individual13.
The α coefficients capture the relevant parameters of the production function of

health; δ is the depreciation rate of the health stock; the γ parameters capture the
level of intergenerational transmission of endowment and characteristics; finally the β
capture the influence of demographic controls.

We ran the model separately for males and females, in order to capture potential
gender differences in the production function, and we consider two different indexes of
genetic endowment: first we let g be a dummy for whether the individual is carrying
at least one minor allele of the FTO gene; then we consider a genetic-predisposition-
score calculated as the number of obesity-related alleles of 26 different genes. We
construct this score following Speliotes et al. (2010)14 and Vimaleswaran and Loos
(2010), and selected the appropriate obesity-related genes from the Genome-Wide-
Association-Studies (GWAS) of Vimaleswaran and Loos (2010); Speliotes et al. (2010);
Sandholt et al. (2012)15. As predicted by Mendel’s law of independent assortment, the
genetic score that we constructed displays a bell-shape similar to a normal, as shown
in figure 3.3.

Figure 5: Distribution of the Genetic-Predisposition-Score

13Since the genetic endowment is fixed and not time-varying, we cannot run a fixed effect regression
without losing information on the genetic influences. Running a random effect model or a simple
regression does not change substantially the results.

14They call it “genetic-susceptibility” score
15The genes that we considered are: MC4R TMEM18 FTO TFAP2B BCDIN3D ETV5 BDNF GN-

PDA2 PPARG THADA IGF2BP2 TCF7L2 NPC1 MTCH2 PCSK1 KCTD15 SH2B1 NRXN3 HHEX
CNR1 LYPLAL1 GCK NEGR1 PTER CDKN2 GCKR. All of them have been validated in various
studies as obesity-related genetic loci, and for some there is evidence of potential environmental path-
ways through energy intake (diet) or energy expenditure (exercise). See the discussion in section
2.
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Tables (1) and (2) report the coefficients of equation (3) for females and males
respectively, when using the FTO gene as index of g.

As we can see from column (1) and (2), the genetic endowment of the child has
a clear and strong effect on the obesity level, both for males and females, even after
controlling for standard demographic characteristics. The effect is similar to the ones
found by related studies16, and comparable to a 10% increase in the BMI of the mother,
which is quite substantial considering that it is the effect of a single genetic locus. Once
we control for the investment choices of the family in column (3), the coefficient αg
does not change significantly; however, once we introduce the interaction between the
gene and the two types of investment, we notice that the effect of FTO is not precisely
estimated anymore, while the most important contribution to the evolution of BMI is
due to diet and exercise, and their interaction with the genetic endowment. In this
respect we find an interesting difference between males and females: for girls the most
important investment is the dietary decision, which also display a significant interaction
with the FTO gene, while their sedentary behavior is not predictive of BMI17; this is
not true for boys, for whom both diet and exercise play and important role, and only
the latter seem to interact with their genetic endowment. Notably, these effects are not
distinguisable anymore once we omit the controls X in column (5), which prove to be
a significant discriminating tool to parse out the difference between the general family
enviroment and the particular effects of the investment decisions.

Finally it is worth noting the very high persistence of BMI: the depreciation coeffi-
cient δ is very low, more so for girls that for boys.

Tables (3) and (4) are similar to the previous tables, but this time we consider the
genetic-predisposition-score as index of g. For comparability with the previous results
we dichotomized the genetic score so that it is equal to one for the children who have
more than the median number of obesity related alleles (number of ‘fat-alleles’ > 25).

We see that the main results carry through even when considering a polygenic ap-
proach: again we find gender-differences in the importance of various investments, and
we find comparable magnitudes of persistence of BMI (δ). The main discrepancy with
the previous set of results is that this time the effect of the genetic-score is significant in
explaining the BMI of girls, even after controlling for the environment and its interplay
with health behavioral decisions.

3.4 A CES Production Function of Health

One of the key predictions of the model was that, in equilibrium, the elasticity of substi-
tution between the two investments depended on the genetic makeup of the individual
(see equation (2)). In order to test this prediction we estimate a CES-production func-
tion of health, allowing all of the parameters to differ across genders and across genetic

16See Dina et al. (2007); Frayling et al. (2007); Timpson et al. (2008)
17It’s worth noticing that once we control only for sedentary minutes and not for kilo-calories, then

the investment in exercise becomes significant also for girls.
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Table 1: Gene and Investment Interaction - Females
(1) (2) (3) (4) (5)

Child FTO Gene 0.023 0.007 0.008 0.180 0.251
[0.007]*** [0.003]** [0.003]** [0.132] [0.133]*

Log(energy intake) 0.037 0.028 0.024
[0.007]*** [0.008]*** [0.008]***

G×Diet 0.026 0.030
[0.015]* [0.015]**

Log(sedentary minutes) 0.010 0.012 -0.007
[0.007] [0.008] [0.008]

G×Activity -0.004 0.003
[0.012] [0.012]

Mom Gene -0.006 -0.006 -0.006
[0.003]** [0.003]** [0.003]**

log(BMImom) 0.075 0.074 0.074
[0.009]*** [0.009]*** [0.009]***

log(BMI)t−1 0.946 0.931 0.931 0.976
[0.008]*** [0.009]*** [0.009]*** [0.007]***

Controls X X X
Observations 4418 4398 4398 4398 4398

Random effects model. * significant at 10%; ** significant at 5%; *** significant at 1%
Dependent variable: log BMI (kg/m2); Controls: mom and dad education and SES;
mother age at pregnancy; parity; birth weight; age of child at clinic date;
dummy for single mother, time, low kilo-calories reporting, late respondent;

endowment. In other words, we don’t consider DNA as a simple input into the pro-
duction function, but rather we allow the genetic makeup of an individual to be a key
determinant that sets the stage for the evolution of human capital.

We consider the following CES specification Ht = A(X; g)
[
αIφe,t + (1− α)Iφdd,t

]1/φ
.

As before, we allow the multiplying constant A(X; g) to depend on various demographic
controls X as well as the depreciation rate of capital (1− δ)Ht−1. Taking the logarithm
we obtain the following equation to estimate:

logHi,t =
1

φ
log
[
αIei,t

φ + (1− α)Idi,t
φ
]

+ (1− δ) logHi,t−1+

+ γhlog(Hm
i ) + βXi,t + κt + εi,t (4)

where the elasticity of substitution is captured by the parameter σ = 1
1−φ .

Assuming that the error term εi,t follows a normal distribution, we can estimate
equation (4) using maximum likelihood18. We split the sample according to gender and

18See section (B) for the details of the likelihood function
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Table 2: Gene and Investment Interaction - Males
(1) (2) (3) (4) (5)

Child FTO Gene 0.021 0.009 0.006 0.208 0.166
[0.007]*** [0.003]*** [0.004] [0.131] [0.131]

Log(energy intake) 0.054 0.050 0.041
[0.007]*** [0.009]*** [0.009]***

G×Diet 0.010 0.006
[0.014] [0.014]

Log(sedentary minutes) 0.027 0.020 0.003
[0.006]*** [0.008]** [0.007]

G×Activity 0.021 0.019
[0.012]* [0.012]

Mom Gene -0.003 -0.003 -0.002
[0.003] [0.003] [0.003]

log(BMImom) 0.069 0.069 0.068
[0.010]*** [0.010]*** [0.010]***

log(BMI)t−1 0.931 0.900 0.901 0.930
[0.010]*** [0.010]*** [0.010]*** [0.009]***

Controls X X X
Observations 3952 3904 3904 3904 3904

Random effects model. * significant at 10%; ** significant at 5%; *** significant at 1%
Dependent variable: log BMI (kg/m2); Controls: mom and dad education and SES;
mother age at pregnancy; parity; birth weight; age of child at clinic date;
dummy for single mother, time, low kilo-calories reporting, late respondent;
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Table 3: Gene and Investment Interaction - Females
(1) (2) (3) (4) (5)

Child Gene Score 0.039 0.006 0.005 0.312 0.320
[0.006]*** [0.002]*** [0.003]* [0.129]** [0.129]**

Log(energy intake) 0.037 0.019 0.015
[0.007]*** [0.011]* [0.011]

G×Diet 0.030 0.031
[0.014]** [0.014]**

Log(sedentary minutes) 0.009 0.001 -0.015
[0.007] [0.010] [0.010]

G×Activity 0.013 0.013
[0.012] [0.012]

Mom Gene -0.006 -0.005 -0.005
[0.007] [0.007] [0.007]

log(BMImom) 0.075 0.074 0.074
[0.009]*** [0.009]*** [0.009]***

log(BMI)t−1 0.944 0.930 0.931 0.976
[0.009]*** [0.009]*** [0.009]*** [0.007]***

Controls X X X
Observations 4418 4398 4398 4398 4398

Random effects model. * significant at 10%; ** significant at 5%; *** significant at 1%
Dependent variable: log BMI (kg/m2); Controls: mom and dad education and SES;
mother age at pregnancy; parity; birth weight; age of child at clinic date;
dummy for single mother, time, low kilo-calories reporting, late respondent;

17



Table 4: Gene and Investment Interaction - Males
(1) (2) (3) (4) (5)

Child Gene Score 0.032 0.009 0.011 0.042 0.024
[0.006]*** [0.003]*** [0.003]*** [0.127] [0.127]

Log(energy intake) 0.053 0.058 0.047
[0.007]*** [0.011]*** [0.011]***

G×Diet -0.007 -0.008
[0.014] [0.014]

Log(sedentary minutes) 0.028 0.019 0.003
[0.006]*** [0.010]** [0.009]

G×Activity 0.014 0.012
[0.012] [0.012]

Mom Gene 0.000 0.002 0.002
[0.008] [0.007] [0.007]

log(BMImom) 0.068 0.069 0.068
[0.010]*** [0.010]*** [0.010]***

log(BMI)t−1 0.929 0.901 0.901 0.930
[0.010]*** [0.010]*** [0.010]*** [0.009]***

Controls X X X
Observations 3952 3904 3904 3904 3904

Random effects model. * significant at 10%; ** significant at 5%; *** significant at 1%
Dependent variable: log BMI (kg/m2); Controls: mom and dad education and SES;
mother age at pregnancy; parity; birth weight; age of child at clinic date;
dummy for single mother, time, low kilo-calories reporting, late respondent;
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two different indicators of genetic endowment: whether the child carries at least one
risky A-allele and whether the child has a genetic score higher than 25; we obtain the
results displayed in tables (5) and (6) respectively.

Table 5: CES-Production function, by gender and FTO allele

Females Males
FTO: T-Allele Risky A-Allele T-Allele Risky A-Allele

Ht−1 (1− δ) 0.987 (0.043) 0.949 (0.066) 0.804 (0.157) 0.966 (0.055)
log(Kcal) α 0.564 (0.317) 0.645 (0.261) 0.258 (0.399) 0.540 (0.269)

φ 0.438 (0.707) 0.578 (0.465) 0.670 (0.616) 0.398 (0.566)
1/(1− φ) 1.778 2.367 3.026 1.662

log(BMImom) γh 0.041 (0.032) 0.050 (0.031) 0.047 (0.044) 0.049 (0.027)
Constant β -2.520 (0.462) -2.676 (0.452) -1.771 (0.594) -2.717 (0.489)
Controls X X X X

Obs 805 3614 693 3261

Dependent variable: log BMI (kg/m2); Controls: mom and dad education and SES;
mother age at pregnancy; parity; birth weight; age of child at clinic date;
dummy for single mother, low kilo-calories reporting, time;

Table 6: CES-Production function, by gender and Genetic Score

Females Males
FTO: Low Score Risky High Score Low Score Risky High Score

Ht−1 (1− δ) 0.932 (0.117) 0.743 (0.228) 0.819 (0.167) 0.977 (0.061)
log(Kcal) α 0.505 (0.349) 0.758 (0.382) 0.632 (0.441) 0.512 (0.339)

φ 0.584 (0.697) 0.280 (1.092) 0.089 (1.061) 0.685 (0.537)
1/(1− φ) 2.404 1.388 1.097 3.170

log(BMImom) γh 0.053 (0.040) 0.099 (0.066) 0.028 (0.052) 0.038 (0.036)
Constant β -2.805 (0.663) -1.719 (0.803) -1.842 (0.704) -2.660 (0.424)
Controls X X X X

Obs 2509 1910 2183 1771

Dependent variable: log BMI (kg/m2); Controls: mom and dad education and SES;
mother age at pregnancy; parity; birth weight; age of child at clinic date;
dummy for single mother, low kilo-calories reporting, time;

First of all we can notice that the elasticity of substitution is always bigger than one,
however it is not precisely estimated. Furthermore, there are seizable difference between
genders and across genetic pools: the depreciation rate seems to be smaller for males;
the share α of investment in diet (kilo-calories consumed) is smaller for males and for
those who carry a T-allele of the FTO gene; finally, the intergenerational transmission
of BMI, depicted by γh, is very small and not substantially different between genders
and genetic pools.
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4 Conclusion

We introduce a simple economic framework that combines the recent discoveries of
molecular genetics with a model of health and human capital formation in the early
periods of life. This enables us to understand how family decisions of how much to
invest in the human capital of the child are affected by the genetic endowment that
the child is born with. We find that the genes change the shadow prices and the rate
of return to different types of investment, inducing a shift in the optimal allocation of
family resources.

We test our model using a novel epidemiological dataset that contains precise in-
formation on children Body Mass Index, their dietary pattern, their level of physical
activity, and combines them with assays of the children DNA. We find that the pre-
dictions of the model are born out by the data: higher level of investment in exercise
and a lower caloric intake can offset the negative consequences of being born with a
particular genetic makeup, and the interplay between genes and the family investment
decisions have long term effects on the children well-being.

Our analysis suggests that, although many genetic loci have been associated with
higher levels of BMI, obesity rates are strongly determined by the interaction between
genes and environment, and behavioral and economic choices can prevent and curtail
the insurgence of obesity.

Although 40-60% of the variation in obesity-related phenotypes has been estimated
to be heritable and due to genetic endowment, policies targeted at children that promote
healthy behaviors, such as diet and regular physical activity, can be very effective in
preventing adiposity and curtailing the recent trend in obesity rates.
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Appendices

A Appendix: The Model

In section (A.1) we consider the simplest version of the static model, where the invest-
ment levels are decided directly by the family and their prices depend on the genetic
endowment of the child. In the second part, section(A.2), we develop a little further
the static model by introducing investment functions that depend on the allocation of
goods and time, in the spirit of Grossman1972. We then derive how the prices of the
investments depend on the genetic endowment of the child and the (shadow) prices of
goods and time.

A.1 Static Model Without Goods and Time Inputs

First let’s look at the static version where food consumption and exercise are consid-
ered as direct inputs, whose price varies with genetic endowment.

max
Id,Ie,c

U(c,H)

s.t.

Y = pcc+ pd (g) Id + pe (g) Ie

H = f (Id, Ie, g)

where H is the stock of health (or human capital), which arises according to the produc-
tion function f(.), a function of different types of investments - in this case we consider
two potential investment, exercise Ie and diet Id. Y is income, which can be allocated
to either consumption c or investments Ie or Id, according to their relative prices px (g)
for k = e, d, which depend on the genetic endowment of the individual.

This is the fundamental assumption of our model: genes enter not only the pro-
duction function of human capital, but also the price of investment: a different genetic
makeup will induce variations in the subjective cost of investments 19.

To find the solution of this model, we consider the Lagrangian associated to this
maximization and we substitute all of the investment functions into the main production
function of human capital

L = U [c,H] + λy (Y − pcc− pd (g) Id − pe (g) Ie)

= U [c, f (Id, Ie, g)] + λy (Y − pcc− pd (g) Id − pe (g) Ie)

19See the discussion in the text for the molecular genetics bases of this assumption as well as a
more general model that derives the shadow prices of these two inputs from a more basic investment
function that depends on genes, goods, and time and effort.
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Maximizing with respect to the goods c, Id, Ie, and normalizing for the price of the
consumption good (pc = 1), we obtain the following first order conditions

∂ L
∂c

=
∂U

∂c
− λy = 0

∂ L
∂Ie

=
∂U

∂H

∂f (Id, Ie, g)

∂Ie
− λype (g) = 0

∂ L
∂Id

=
∂U

∂H

∂f (Id, Ie, g)

∂Id
− λypd (g) = 0

The first set of equations tell us that the optimal level of goods spent in investment
(I∗e , I

∗
d) is such that the marginal productivity of every dollar spent on investment has

to be equal to the marginal utility of every dollar spent on consumption

λy =
∂U

∂H

∂f (Id, Ie, g)

∂Ie

1

pe (g)
=
∂U

∂H

∂f (Id, Ie, g)

∂Id

1

pd (g)
=
∂U

∂c

Focusing on the investment part we have that

∂f(Id,Ie,g)
∂Ie

pe (g)
=

∂f(Id,Ie,g)
∂Id

pd (g)

Or
∂f(Id,Ie,g)

∂Ie
∂f(Id,Ie,g)

∂Id

=
pe (g)

pd (g)

Since the prices of investment depend on the genetic endowment of the individuals,
by changing the genes we have a variation in the shadow price of inputs and, therefore,
a change in the returns to investment. For example, if we know that a particular gene,
like FTO, has an effect on energy intake (and therefore the amount of food required
by the organism) and not on energy expenditure (and therefore the calories consumed

by physical activity), then we can say that ∂pe(g)
∂g

= 0 while ∂pd(g)
∂g

> 0, meaning that
being on a diet is more “expensive” for individuals that carry a short allele in the FTO
gene, while it has no effect on their (shadow) price of exercising. However the genes
also enter the production function of health, f (.). In order to obtain clear implications,
we have to assume that the impact of genes on the production function ∂f

∂g
, which can

call the productivity effect, does not counterbalance the price effect ∂pe(g)
∂g

. A sufficient
condition is for genes not to interact with the investments, so that the ratio of partial
derivatives ∂f(Id,Ie,g)

∂Ie
/∂f(Id,Ie,g)

∂Id
does not depend on g20.

However, since the FOC must hold ∀g, we can derive a more general condition by
taking the derivative with respect to g, obtaining:

∂f(Id,Ie,g)
∂Ie∂g

∂f(Id,Ie,g)
∂Id

− ∂f(Id,Ie,g)
∂Id∂g

∂f(Id,Ie,g)
∂Ie[

∂f(Id,Ie,g)
∂Id

]2 =
p′epd − pep′d

[pd]
2

20For example, this is the case if the cross partials are equal to zero, ∂f(Id,Ie,g)
∂Ie∂g

= ∂f(Id,Ie,g)
∂Id∂g

= 0
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therefore we have that the productivity effect does not overturn the price effect if
the sign of the right hand side of the equation is the same as the sign of the difference

between the two sides, or if |p′epd − pep′d| >
∣∣∣∂f(Id,Ie,g)∂Ie∂g

∂f(Id,Ie,g)
∂Id

− ∂f(Id,Ie,g)
∂D∂g

∂f(Id,Ie,g)
∂Ie

∣∣∣
A.1.1 Functional form Specification

For simplicity, let’s assume a Cobb-Douglas functional form specification for the utility
function, so that

U [c,H] = φ log c+ (1− φ) logH

Furthermore, we can assume different specification for the the production function of
health, for example a Cobb-Douglas specification or a more general Constant Elasticity
of Substitution (CES).

Cobb-Douglas First, let’s assume a Cobb-Douglas functional form specification also
for the production function of health: f (Id, Ie, g) = A (Iαee I

αd
d gαg). The problem be-

comes

max
Id,Ie,c

φ log c+ (1− φ) [logA+ αe log Ie + αd log Id + αg log g]

s.t.

Y = c+ pd (g) Id + pe (g) Ie

The first order condition become:

∂ L
∂c

=
φ

c∗
− λy = 0

∂ L
∂Ie

=
(1− φ)αe

I∗e
− λype (g) = 0

∂ L
∂Id

=
(1− φ)αd

I∗d
− λypd (g) = 0

We have that

λy =
φ

c∗
=

(1− φ)αe
I∗epe (g)

=
(1− φ)αd
I∗dpd (g)

Expressing everything in term of consumption c∗ we have

I∗e =
(1− φ)

φ

αe
pe (g)

c∗

I∗d =
(1− φ)

φ

αd
pd (g)

c∗

Substituting everything into the budget constraint, in order to obtain the demand
as function of prices and income, we have:
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Y = c∗ + pe (g) I∗e + pd (g) I∗d

= c∗ + pe (g)
(1− φ)

φ

αe
pe (g)

c∗ + pd (g)
(1− φ)

φ

αd
pd (g)

c∗

= c∗
[
1 +

(1− φ)

φ
(αe + αd)

]
so that we have

c∗ = Y φ

[
1

φ+ (1− φ) (αe + αd)

]
I∗e = Y

αe (1− φ)

pe (g)

[
1

φ+ (1− φ) (αe + αd)

]
I∗d = Y

αd (1− φ)

pd (g)

[
1

φ+ (1− φ) (αe + αd)

]
Note that if we assume that αe + αd = 1, so that there are constant returns to

scale to Ie and Id in the production function of health, then the results simplifies to the
usual result that the optimal consumption of c and H will be proportional to income,
with weights proportional to their importance in the utility function (φ and 1 − φ
respectively) and inversely proportional to their prices; for example c∗ = φY .

However it is interesting to focus on the investment, in order to better understand
the choices of substitution between the two inputs:

∂f(Id,Ie,g)
∂Ie

∂f(Id,Ie,g)
∂Id

=
pe (g)

pd (g)

αeAI
∗αe−1
e I∗αdd gαg

αdAI∗αee I∗αd−1d gαg
=

pe (g)

pd (g)

αeI
∗
d

αdI∗e
=

pe (g)

pd (g)

I∗d =
αd
αe

pe (g)

pd (g)
I∗e

It is easy to see that the dependency on genes drops out of the production function,
and g influences only the relative prices

CES A similar result holds if we consider the case of Constant Elasticity of Substi-
tution, so that the production function of health becomes:

f (Id, Ie, g) = A [αeI
η
e + αdI

η
d + (1− αe − αd) gη]

1
η

and the family problem:
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max
Id,Ie,c

φ log c+ (1− φ)

[
logA+

1

η
log [αeI

η
e + αdI

η
d + (1− αe − αd) gη]

]
s.t.

Y = c+ pd (g) Id + pe (g) Ie

The first order condition become:

∂ L
∂c

=
φ

c∗
− λy = 0

∂ L
∂Ie

=
(1− φ)αeI

∗η−1
e

[αeI
∗η
e + αdI

∗η
d + (1− αe − αd) gη]

η

η
− λype (g) = 0

∂ L
∂Id

=
(1− φ)αdI

∗η−1
d

[αeI
∗η
e + αdI

∗η
d + (1− αe − αd) gη]

η

η
− λypd (g) = 0

We have that

λy =
φ

c∗

=
1

pe (g)

(1− φ)αeI
∗η−1
e

f (I∗e , I
∗
d , g)η /A

=
1

pd (g)

(1− φ)αdI
∗η−1
d

f (I∗e , I
∗
d , g)η /A

Regretfully there is no closed form solution to this problem21. However it can be
useful to focus on the FOC for investment, in order to better understand the choices of
substitution between the two inputs:

∂f(Id,Ie,g)
∂Ie

∂f(Id,Ie,g)
∂Id

=
pe (g)

pd (g)

21Even if we use the relationship between the investments to substitute it into the FOC to obtain
c∗ as a function of I∗e , we get:

c∗ =
φ (1− φ)αe

pe (g)

I∗η−1
e[

αeI
∗η
e + αdI

∗η
d + (1− αe − αd) gη

]
=

φ (1− φ)αe
pe (g)

I∗η−1
e[

αeI
∗η
e +

(
α2

d

αe

)η (
pe(g)
pd(g)

)η/η−1

I∗ηe + (1− αe − αd) gη
]

φ (1− φ)

pe (g)

αe

I∗e

[
αe +

(
α2

d

αe

)η (
pe(g)
pd(g)

)η/η−1

+ (1− αe − αd)
(
g
I∗e

)η]
which does not lead to a closed form solution. However it is interesting to note that the optimal
consumption c∗ will depend on the genetic makeup g even if the allocation of resources between the
investments does not.
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A [αeI
∗η
e + αdI

∗η
d + (1− αe − αd) gη]

1−η
η αeI

∗η−1
e

A [αeI
∗η
e + αdI

∗η
d + (1− αe − αd) gη]

1−η
η αdI

∗η−1
d

=
pe (g)

pd (g)

αe
αd

(
I∗d
I∗e

)η−1
=

pe (g)

pd (g)

I∗d =

[
αd
αe

pe (g)

pd (g)

]1/η−1
I∗e

Also in this case we have that the ratio of derivatives does not depend on g, and
therefore the effect of genes is apparent only through the prices. These are example
of quite general functions, allowing for different elasticities of substitutions between
inputs, that still satisfy our assumption. Furthermore, in these cases we have the the
optimal inputs are proportional to each other and to the ratio of their prices.

A.2 Static Model With Goods and Time Inputs

In order to give some microfoundations to the claim that the prices of investment depend
on the genetic makeup of an individual, we can consider the model presented in equation
(1), where the two investments are themselves function of market goods - which prices
are equal for everybody, as well as time and effort, and the genetic endowment of the
individual. To find a solution to this model, we consider the Lagrangian associated
to this maximization and we substitute all of the investment functions into the main
production function of human capital

L = U [c, τl, H] + λτ (Ω− τl − τe − τd) + λy (Y − pcc− pdxd − pexe)
= U [c, τl, f (Ie (xe, τe, g) , Id (xd, τd, g) , g)] +

+λτ (Ω− τl − τe − τd) + λy (Y − pcc− pdxd − pexe)

Assuming that all of the time not used investing is devoted to leisure we have that
the time constraint is always binding and τl = Ω− τe − τd so that

L = U [c,Ω− τe − τd, f (Ie (xe, τe, g) , Id (xd, τd, g) , g)] +

+λy (Y − pcc− pdxd − pexe)

Maximizing with respect to the goods c, xe, xd and time τe, τd, and normalizing for
the price of the consumption good (pc = 1), we obtain the following first order conditions

∂ L
∂c

=
∂U

∂c
− λy = 0

∂ L
∂xe

=
∂U

∂H

∂f (Id, Ie, g)

∂Ie (xe, τe, g)

∂Ie (xe, τe, g)

∂xe
− λype = 0
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∂ L
∂xd

=
∂U

∂H

∂f (Id, Ie, g)

∂Id (xd, τd, g)

∂Id (xd, τd, g)

∂xd
− λypd = 0

And

∂ L
∂τe

=
∂U

∂H

∂f (Id, Ie, g)

∂Ie (xe, τe, g)

∂Ie (xe, τe, g)

∂τe
− ∂U

∂τl
= 0

∂ L
∂τd

=
∂U

∂H

∂f (Id, Ie, g)

∂Id (xd, τd, g)

∂Id (xd, τd, g)

∂τd
− ∂U

∂τl
= 0

The first set of equations tell us that the optimal level of goods spent in investment
(x∗e, x

∗
d) is such that the marginal productivity of every dollar spent on investment has

to be equal to the marginal utility of every dollar spent on consumption

∂U

∂H

∂f (Id, Ie, g)

∂Ie (xe, τe, g)

∂Ie (xe, τe, g)

∂xe

1

pe
=
∂U

∂H

∂f (Id, Ie, g)

∂Id (xd, τd, g)

∂Id (xd, τd, g)

∂xd

1

pd
=
∂U

∂c

Focusing on the investment part we have that

∂f(Id,Ie,g)
∂Ie(xe,τe,g)

∂Ie(xe,τe,g)
∂xe

pe
=

∂f(Id,Ie,g)
∂Id(xd,τd,g)

∂Id(xd,τd,g)
∂xd

pd

Or
∂f(Id,Ie,g)
∂Ie(xe,τe,g)

∂Ie(xe,τe,g)
∂xe

∂f(Id,Ie,g)
∂Id(xd,τd,g)

∂Id(xd,τd,g)
∂xd

=
pe
pd

Rearranging the terms we obtain:

∂f(Id,Ie,g)
∂Ie(xe,τe,g)

∂f(Id,Ie,g)
∂Id(xd,τd,g)

=
pe/

∂Ie(xe,τe,g)
∂xe

pd/
∂Id(xd,τd,g)

∂xd

f ′Ie
f ′d

=
pe/I

′
e

pd/I ′d
=
p′e
p′d

A.2.1 Functional form Specification

Let’s make some functional form specifications that will ease the solution of the model.
Consider a Cobb-Douglas specification for all of the functions

max
xe,xd,{τk}dk=e,c

φ1 log c+ φ2 log τl + (1− φ1 − φ2) logH

s.t.

Ω = τl + τe + τd

Y = pcc+ pdxd + pexe
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H = AH (Iαee I
αd
d gαg)

Ie = Ae (xγ1e τ
γ2
e g

γ3)

Id = Ad
(
xδ1d τ

δ2
d g

δ3
)

Assuming that all of the time not used investing is devoted to leisure we have that
the time constraint is always binding and τl = Ω− τe − τd so that

L = φ1 log c+ φ2 log (Ω− τe − τd)

+ (1− φ1 − φ2) logAH

[
(Aex

γ1
e τ

γ2
e g

γ3)αe
(
Adx

δ1
d τ

δ2
d g

δ3
)αd

gαg
]

+

+λy (Y − pcc− pdxd − pexe)
= φ1 log c+ φ2 log (Ω− τe − τd)

+ (1− φ1 − φ2) logAHA
αe
e A

αd
d g

γ3αe+δ3αd+αg

+ (1− φ1 − φ2) γ1αe log xe + (1− φ1 − φ2) δ1αd log xd +

+ (1− φ1 − φ2) γ2αe log τe + (1− φ1 − φ2) δ2αd log τd +

+λy (Y − pcc− pdxd − pexe)

It is easy to see that in this case genes g do not affect anything, but simply enter
as a constant, similar to the effect of A. Maximizing with respect to the goods c, xe, xd
and time τe, τd, and normalizing for the price of the consumption good (pc = 1), we
obtain the following first order conditions

∂ L
∂c

=
φ1

c
− λy = 0

∂ L
∂xe

=
(1− φ1 − φ2) γ1αe

xe
− λype = 0

∂ L
∂xd

=
(1− φ1 − φ2) δ1αd

xd
− λypd = 0

And

∂ L
∂τe

=
(1− φ1 − φ2) γ2αe

τe
− φ2

Ω− τe − τd
= 0

∂ L
∂τd

=
(1− φ1 − φ2) δ2αd

τd
− φ2

Ω− τe − τd
= 0

Looking at the optimal allocation of goods, we have that

φ1

c
=

(1− φ1 − φ2) γ1αe
pexe

=
(1− φ1 − φ2) δ1αd

xdpd

xe =
(1− φ1 − φ2)

φ1

γ1αe
pe

c
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xd =
(1− φ1 − φ2)

φ1

δ1αd
pd

c

Substituting into the budget constraint we obtain that

Y = c+ pexe + pdxd

= c

[
1 + pe

(1− φ1 − φ2)

φ1

γ1αe
pe

+ pd
(1− φ1 − φ2)

φ1

δ1αd
pd

]
= c

[
φ1 + (1− φ1 − φ2) (γ1αe + δ1αd)

φ1

]
so that the optimal allocations become:

c∗ =
φ1

φ1 + (1− φ1 − φ2) (γ1αe + δ1αd)
Y

x∗e =
(1− φ1 − φ2) γ1αe

φ1 + (1− φ1 − φ2) (γ1αe + δ1αd)

Y

pe

x∗d =
(1− φ1 − φ2) δ1αd

φ1 + (1− φ1 − φ2) (γ1αe + δ1αd)

Y

pd

Looking at the FOC for time allocation, we have that the ratio of the time spent
investing in the two inputs is constant and equl to the relation of productivity coeffi-
cients: τd

τe
= δ2αd

γ2αe
. Remembering that Ω− τe − τd = τl, we have that τl

τe
= (1−φ1−φ2)γ2αe

φ2
.

Substituting into the time budget constrain:

Ω = τ ∗l + τ ∗e + τ ∗d

=

[
(1− φ1 − φ2) γ2αe

φ2

+ 1 +
δ2αd
γ2αe

]
τ ∗e

so that the optimal allocation becomes

τ ∗e =
φ2γ2αe

(1− φ1 − φ2) γ22α
2
e + φ2γ2αe + φ2δ2αd

Ω

τ ∗d =
φ2δ2αd

(1− φ1 − φ2) γ22α
2
e + φ2γ2αe + φ2δ2αd

Ω

τ ∗l =
(1− φ1 − φ2) γ

2
2α

2
e

(1− φ1 − φ2) γ22α
2
e + φ2γ2αe + φ2δ2αd

Ω

CES for the Investment Functions Let’s assume instead that the investment func-
tions follow a Constant Elasticity of Substitution functional form, while the production
function a normal Cobb-Douglas. Therefore we have the following maximazation

max
xe,xd,{τk}dk=e,c

φ1 log c+ φ2 log τl + (1− φ1 − φ2) logH
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s.t.

Ω = τl + τe + τd

Y = pcc+ pexe + pdxd

H = AH (Iαee I
αd
d gαg)

Ie (xe, τe, g) = Ae [γ1x
ηe
e + γ2τ

ηe
e + (1− γ1 − γ2) gηe ]

1
ηe

Id (xd, τd, g) = Ad [δ1x
ηd
d + δ2τ

ηd
d + (1− δ1 − δ2) gηd ]

1
ηd

Therefore we have that

∂Ie (xe, τe, g)

∂xe
= γ1x

ηe−1
e

ηe
ηe
Ae [γ1x

ηe
e + γ2τ

ηe
e + (1− γ1 − γ2) gηe ]

1
ηe
−1

= γ1x
ηe−1
e I1−ηee Aηee

∂Id (xd, τd, g)

∂xd
= δ1x

ηd−1
d

ηd
ηd
Ad [δ1x

ηd
d + δ2τ

ηd
d + (1− δ1 − δ2) gηd ]

1
ηd
−1

= δ1x
ηd−1
d I1−ηdd Aηdd

Focusing only on the investment decisions, we know that it must hold

∂f(Ie,Id,g)
∂Ie(xe,τe,g)

∂f(Ie,Id,g)
∂Id(xd,τd,g)

=
pe/

∂Ie(xe,τe,g)
∂xe

pd/
∂Id(xd,τd,g)

∂xd

αeHI
−1
e

αdHI
−1
d

=
pe/γ1x

ηe−1
e I1−ηee Aηee

pd/δ1x
ηd−1
d I1−ηdd Aηdd

αeI
−1
e xηe−1e I1−ηee

αdI
−1
d xηd−1d I1−ηdd

=
pe/γ1A

ηe
e

pd/δ1A
ηd
d

xηe−1e / (AeIe)
ηe

xηd−1d / (AdId)
ηd

=
pe/γ1αe
pd/δ1αd

xηe−1e / [γ1x
ηe
e + γ2τ

ηe
e + (1− γ1 − γ2) gηe ]

xηd−1d / [δ1x
ηd
d + δ2τ

ηd
d + (1− δ1 − δ2) gηd ]

=
pe/γ1αe
pd/δ1αd

And, looking at the time allocation, we get a similar result:

∂f (Ie, Id, g)

∂Ie (xe, τe, g)

∂Ie (xe, τe, g)

∂τe
=

∂f (Ie, Id, g)

∂Id (xd, τd, g)

∂Id (xd, τd, g)

∂τd

αeHI
−1
e γ2A

ηe
e I

1−ηe
e τ ηe−1e = αdHI

−1
d δ2A

ηd
d I

1−ηd
d τ ηd−1d

τ ηe−1e / (AeIe)
ηe

τ ηd−1d / (AdId)
ηd

=
αdδ2
αeγ2

So we have that the optimal level of goods (xe, xd)
∗ and time (τe, τd)

∗ will depend
on the genetic makeup, but their ratio will be constant

τ 1−ηee

τ 1−ηdd

αdδ2
αeγ2

=
pe/γ1αe
pd/δ1αd

x1−ηee

x1−ηdd
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(xe/τe)
1−ηe

(xd/τd)
1−ηd =

pd
pe

γ1δ2
γ2δ1

xe
τe

=

(
pd
pe

γ1δ2
γ2δ1

)1/1−ηe (xd
τd

) 1−ηd
1−ηe

Therefore, the shadow price of investment k is p′k = pkx
∗
k + wτ ∗k , where w is the

shadow price of time, and it will depend on the genetic endowment of the child.

B Likelihood

In section (3.4) we estimate a Constant Elasticty of Substitution production function.
We have the following specification for log(Hi,t), the logarithm of Body-Mass-Index of
individual i at time t:

logHi,t =
1

φ
log
[
αIei,t

φ + (1− α)Idi,t
φ
]

+ (1− δ) logHi,t−1 + βXi,t−1 + εi,t

where Xi,t−1 contains demographic covariates, as well as mother characteristics. We
assume that εi,t follows a normal distribution with mean zero and variance σ2

ε . The
associated log-likelihood function is the following:

log L =
n∑
i=1

log

 1√
2πσ2

ε

exp

−
(

logHi,t − 1
φ

log
[
αIei,t

φ + (1− α)Idi,t
φ
]
− (1− δ) logHi,t−1 − βXi,t−1

)2
2σ2

ε




= −n
2

log
(
σ2
ε

)
− 1

2σ2
ε

n∑
i=1

(
logHi,t −

1

φ
log
[
αIei,t

φ + (1− α)Idi,t
φ
]
− (1− δ) logHi,t−1 − βXi,t−1

)2
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