
The determinants of failure in drug development: a

duration analysis

Eliana Barrenho∗

Imperial College London, Business School

October 2014

Abstract

Global research and development data on pharmaceutical drugs from 1980

to 2012 are used to estimate the risk of attrition of a project in each R&D

stage as a function of the duration of each stage, and competition and al-

liances between firms. We find that markets with more new drugs and less

R&D competitors experience higher attrition. These effects are particularly

important in the discovery and phase 2 clinical trials. Competition from

longer established drugs appears to not significantly affect attrition. The im-

pact of alliances is not conclusive, bringing into question role of alliances on

pharmaceutical innovation.
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1 Background

Product innovation in the pharmaceutical industry is costly, risky and time-consuming.

With a decreased number of new chemical entities being discovered, and research

and development (R&D) costs representing a high proportion of the industry rev-

enues, the pharmaceutical industry is facing unprecedented challenges to its R&D

model. The industry’s profitability and growth prospects are also under pressure as

the finance of healthcare systems comes under increasingly intense scrutiny. Two

of the key determinants of drug R&D activity costs are success rates and develop-

ment times. Given the long, uncertain and multi-stage process of developing a new

drug, understanding failure rates is key to better understand pharmaceutical indus-

try performance, the magnitude of the long-term investments involved in R&D, and

improving investment activity in the future (see, for instance DiMasi et al. (2003)

or Mestre-Ferrandiz et al. (2012)).

The multi-stage nature of the drug R&D process is characterised by the regula-

tory criteria established by policy makers to ensure safe, efficacious and accessible

drugs for consumers. These regulations imply that the successful completion of

each development stage requires different amounts of resources, diversified scientific

knowledge, and distinct competences from firms. The stages of R&D are therefore

very heterogeneous in duration, scope, investment requirements and probability of

success (Mestre-Ferrandiz et al., 2012).

Despite the evident heterogeneity across the different stages, the vast majority of

the literature in this area tends to consider the R&D process as a ”black box” when

evaluating the determinants of failure of research projects. We believe, however,

that it is important to unpack the R&D process by analysing the key success factors

of each stage of the development process in order to design more focused policies

and incentives that foster successful R&D. In this paper, we measure the association

of the probability of failure in the different R&D phases with the potential factors

that can affect innovation with special focus on the role of competition and alliances.

We do so by modelling the probability of failure of a project in each stage of the

R&D process as a function of its R&D history considering the timing, duration and

country of that stage.

Literature on the determinants of pharmaceutical innovation

There are three strands of literature that relate to our analysis. The first consolidates

the following as determinants of innovation: at an aggregate level, epidemiological

and income distributions in more dynamic economies matter for innovation given the

extent to which they determine market size (see, for instance, Acemoglu and Linn
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(2004) or Lichtenberg (2005)); at the industrial level, the intensity of competition

between pharmaceutical companies (see Giaccotto et al. (2005), Grabowski and Moe

(2008) or Mahlich and Roediger-Schluga (2006)), the presence of economies of scale

and technological specialisation (?), and alliances between firms (Aharonson et al.,

2007); and at the firm level, the future commercial profitability of the drug project

(Giaccotto et al., 2005; Grabowski and Vernon, 2000; Vernon et al., 2010), and firm

characteristics such as size (Alexander et al., 1995), age (Kim et al., 2009), location

and nationality (see, for instance, Hirai et al. (2010)).

In all this literature, the process of R&D process is considered a ”black box” and

the different stages of the R&D process are not assessed separately.

A second strand of literature focuses on the measurement of success rates for the

various stages of the R&D process using a diversity of methods and datasets (Adams

and Brantner, 2006, 2010; DiMasi et al., 2010, 2003, 1991; Kola and Landis, 2004),

with only one study providing detailed information on discovery success rates (Paul

et al., 2010). These contributions show that drugs success rates differ across the

different stages of the R&D process and that the failure rates of the clinical stages

have been increasing over time. For example, the most comparable studies report

success rates for Phase 1 to be 71% (DiMasi et al., 2003) and 65% (DiMasi et al.,

2010); for Phase 2 to be 44% (DiMasi et al., 2003) and 40% (DiMasi et al., 2010);

and for Phase 3 to be 69% (DiMasi et al., 2003) and 64% (DiMasi et al., 2010).

Even though these studies provide valuable insight regarding the heterogeneity of

the R&D process they do not address the factors associated with the success of each

phase of the process.

The determinants of success in the different stages of the R&D process are assessed

by a third strand of the literature that accounts for the projects history and char-

acteristics in the analysis of phase-specific success rates.

Danzon et al. (2005b) analyse the effect of alliances and firm experience on the phase-

specific probability of success of projects for 1,910 compounds developed by US

biopharmaceutical firms between 1988 and 2000. They find evidence of diminishing

returns of firms experience in late stages of the R&D process; diseconomies of scale

in Phase 3; a positive effect of alliances on the probability of success in Phases 2

and 3; and evidence of knowledge spillovers across firms in Phase 1.

Kyle (2006) analyses all drugs developed in the 28 largest pharmaceutical markets

between 1980 and 2000 and finds that several of the characteristics of entrants

and incumbents are positively associated with the time-to-entry in the G7 markets.

When accounting for country-specific demand factors, competition appears to be

negatively correlated with the likelihood of entry. Indeed, the impact of older drugs
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seems to be greater than that of more recently introduced drugs. Also, markets with

many potential competitors experience more entry.

Pammolli et al. (2011) examine the association between phase-specific R&D pro-

ductivity and portfolio composition and regional location of R&D investments using

more than 28,000 compounds investigated since 1990 in the US and Europe. They

find that lower probability of success is associated with reorientation of R&D in-

vestments to riskier and highly uncertain therapeutic areas. Also, no productivity

gap is found between companies based in the United States and Europe. They also

present the most recent estimates of failure rates for Phase 1, Phase 2 and Phase 3

that are 25%, 52% , and 29% , respectively.

Finally, the Federal Trade Commission (FTC) uses information of all drugs that

initiated the registration process through the US Food and Drug Administration for

the first time between 1989 and 2002 to analyse the association of drug’s observable

characteristics (such as therapeutic group, route of administration and originators

size) with its pathway through the three stages of clinical trials (Abrantes-Metz

et al., 2004). The authors find that the duration of the R&D process has decreased

from 1995 to 2002; drugs with longer durations are less likely to succeed, as well as

drugs developed by smaller firms.

Our analysis relates to these contributions in that we i) measure failure rates in

each stage of the R&D process and ii) analyse the characteristics associated with

project failure across the different stages of the R&D process by estimating how

phase-specific R&D failure rates correlate with competition and alliances. However,

our analysis departs from these studies in two significant ways.

First, in contrast to some earlier contributions, we use two different semi-parametric

proportional models to estimate the impact of market structure on the phase-specific

failure rates by considering the history of the R&D process, and the duration of the

drug projects in each phase of the process. In line with Kyle (2006) and Abrantes-

Metz et al. (2004), we believe this methodology fits more closely the dynamic and

lengthy nature of the R&D process than the logistic regression models used by

Danzon et al. (2005b) and Pammolli et al. (2011), which do not consider project

duration as a potentially relevant part of the failure process.

Secondly, we use a much richer dataset with global data from 1980 to 2012 across

all therapeutic areas, and we analyse the influence of competition and alliances on

the failures rates in each phase of the entire R&D process from discovery to market

launch. Kyle (2006) focuses on the market conditions that affect the probability of

launching a drug into the market whereas Abrantes-Metz et al. (2004) and Pammolli

et al. (2011) assess the role of drugs observable characteristics (i.e., therapy category,

4



route of administration) and companys size and location on the success of transition

in clinical phases. Danzon et al. (2005b) focuses on the role of alliances and firm

experience on the success of clinical trials.

We are primarily interested in modelling the association between the probability of

failure of the projects in any R&D phase and industrial level determinants, namely

competition and alliances. The nature and timing of competition and alliances

between firms, manufacturers, scientific community, laboratories and academia may

foster or hinder innovation. Indeed, measures of competition and alliances have

been widely used to explain success and launch of new drugs in the market and are,

therefore, likely to also influence the other stages of the R&D process.

The role of competition

Economic theory has explored the unstable relationship between competition and

innovation (Aghion et al., 2005; Scherer, 1967). On the one hand, competition may

increase firms’ incentives to innovate in order to ”escape competition” ((Aghion

et al., 2005), p. 3) and maximise the future expected profits. On the other hand,

competition may exert an extra pressure on firms and discourage innovation (Aghion

and Howitt, 1992; Romer, 1990).

The evidence explores this ambiguous relationship between market competition on

innovation. Some studies find a significant positive effect of competition on drug

innovation (Aharonson et al., 2007; Alexander et al., 1995; Giaccotto et al., 2005;

Arundel and Kabla, 1998; Grabowski and Vernon, 2000; Mahlich and Roediger-

Schluga, 2006), whereas one study reports a negative significant effect of market

competition on drug time-to-entry in the market (Kyle, 2006).

These contributions focus on two types of competition: i) competition in the final

product market and ii) competition within the R&D process. Competition in the

final product market is proxied by sales outside a company’s headquarters’ country

(as percentage of total sales) (Arundel and Kabla, 1998; Giaccotto et al., 2005),

firms’ global market share (Alexander et al., 1995) and number of drugs established

in the market (Kyle, 2006). Competition within the R&D process is proxied by

industrial margins on R&D investment per sales (see for instance Giaccotto et al.

(2005) or Grabowski:2000vo), and the number of drugs launched anywhere in the

world in the same market (Kyle, 2006).

To the best of our knowledge, Kyle (2006) is the only contribution that explores si-

multaneously competition in the final product market as well as competition within

the R&D process. The study demonstrates that competition within the R&D pro-

cess stimulates entry, whereas competition in the product market has a negative

significant impact on entry. Competition from drugs longer established in the mar-
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ket appears to a have a greater impact than that from more recently introduced

ones. Also, markets with many potential competitors (number of drugs launched

anywhere in the world) experience more entry.

Following Kyle’s results on the role of competition on market launch, we hypothesize

that both types of competition can also impact success of the different stages of the

R&D process (Kyle, 2006).

Our hypothesis is that if competition within the R&D process influences market

entry (i.e. the transition from Phase 3 to the market) then it is plausible to presume

that it could also have a significant impact on the strategic decisions within the

R&D process and, in particular, the decision to abandon a drug project. By testing

this hypothesis we expect to identify important and significant differences of the

effect of competition in different stages of the R&D process. In assessing the role

of competition, we assume that current projects in a given market take market

structure, as well as competitors’ strategies within the R&D process, as given and

compete simultaneously in time t.

The role of alliances

Though not conclusive, the literature suggests an important effect of alliances (pri-

vate/public) in the drug R&D productivity. Two studies demonstrate significant

positive effects of alliance on phase-specific R&D success rates (Danzon et al., 2005b)

and drug launch times (Hirai et al., 2010), whilst a study concludes on negative ef-

fects of alliances with academia on R&D success rates (Aharonson et al., 2007).

To the best of our knowledge, only Danzon et al. (2005b) demonstrate a positive

effect of alliances on phase-specific probability of success of projects. In particular,

they show that alliances have a positive effect on the probability of success in Phase

2 and Phase 3. Building on this literature we will investigate the role of alliances on

the failure of R&D projects at each stage of the R&D process. We expect a positive

effect of alliances on R&D success, which may be offset by a negative impact of

some types of alliances, i.e. with a public institution/university as some literature

suggests (Aharonson et al., 2007).

The remainder of this paper is organised as follows. In section 2 we present the

specification model and estimation strategy. In section 3 we describe the data. In

section 4 we discuss the descriptive statistics and non-parametric analysis, and we

present the main results from the semi-parametric analysis. Finally, in section 5 we

provide a discussion of the results and conclusions.
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2 Specification model and estimation strategy

Failure expresses the opposite situation of keeping open the option of investment in

the future on a particular R&D project, and there are many possible reasons why

failure happens. Failure of innovation may be due to a combination of regulatory

pressures, scientific/clinical non-achievements, or even strategic decisions of firms

that withdrawal the project. There are therefore technical and economic risks that

impact on the likelihood of failure of a R&D project (Pennings and Sereno, 2011).

Studying the option of deferring a decision of keeping investing or abandoning a

project is part of the nature of R&D investments. These investment decisions in-

volve a substantial degree of uncertainty about the future and an enormous level

of irreversibility. This means that the timing of investment is critical under these

circumstances and represents one the main dimensions of R&D decisions, impacting

on development times and R&D costs (Palmer and Smith, 2000; Dixit, 1994).

Duration models focus on the analysis of time duration and the occurrence of events

to statistically infer on the relationship between some factors and the probability of

non-occurrence (survival) of a certain event. We use duration models to model R&D

failure and to account for the dynamic nature of sequencing R&D process. In each

R&D stage a project, which represents a compound for a particular indication, is at

risk of failure since the first year the project entered in that R&D stage and it ceases

being at risk of failure if one of two things happens: (i) it transits to the next R&D

stage, including the market launch (anywhere in the world); (ii) it is discontinued

by the firm. We assume that once failed the project may not be reactivated by the

firm.

The probability of failure of a new drug component in the short interval of time dt

after t, can be represented by the hazard function h(t) (Lancaster, 1992) given by:

h(t) = P (failure at time t | R&D until time t) =
P (failure at time t)

P (R&D until time t)
(1)

The hazard function h(t) can be rewritten as

h(t) = lim
dt→0

P (t ≤ T < t+ dt) | T ≥ t)

dt
=
P (t ≤ T < t+ dt) | T ≥ t)

P (T ≥ t)
(2)

If we represent the duration distribution function as P (T < t) = F (t)1, where t ≥ 0

1In the context of duration models,

F (t) = 1− S(t) (3)

where S(t) represents the survivor function. S(t) gives the fraction of projects that stayed at least
t years in the R&D process. It can be written in terms of an integral involving the hazard function
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at point in time t, and letting the probability density function to be f(t), then the

hazard function h(t) at time t is given by:

h(t) =
F (t+ dt)− F (t))

(1− F (t)
= lim

dt→0

F (t+ δt)− F (t))

dt
· 1

1− F (t)
=

= F ′(t) · 1

1− F (t)
=

f(t)

1− F (t)
(6)

This is the hazard rate of failure, and represents the instantaneous rate of failure per

unit of time at t, conditional on the fact that the project has been in development

up to time t. The hazard function can be rewritten as a function of X systematic

observable characteristics of our interest:

h(t,X) = h0(t)θ(X) (7)

where h(t,X) is a function of θ(X), and X represents a set of relevant observable

characteristics, that vary across calendar time. This enables us to model the asso-

ciation between failure rates and X covariates of interest, in our case, competition

and alliances. We are interested in modelling the relationship between competition

and alliances and the rate at which a project fails the R&D process after t, given

that the project did not fail before t. In order to do so, we model the failure rates

hji from state i to state j, with j = failure and i ∈ {d, p1, p2, p3}, where d denotes

discovery, p1 denotes Phase 1, p2 represents Phase 2, and p3 denotes Phase 3 trials.

The advantages of separately modelling the phases are that the covariates of interest

may be more important in some phases than others, that some covariates change at

the beginning of each phase, and that the quality of the data may differ throughout

the different stages. For example, clinical trials conducted in patients must be

registered in most national regulatory bodies, whereas data regarding at pre-clinical

stages may be somewhat self-selected by companies that choose to share information.

Given the supportive literature we expect a positive effect of potential market size on

drug innovation, provided that we also control for market size. We seek to control for

country-specific regulatory characteristics that, among others, capture systematic

it equals the exponential of the negative integral of the hazard function between on the interval
[0, t]:

S(t) = e
∫ t
0
h(u)δu

Similarly, the hazard function h(t) can be written in terms of a derivative involving the survivor
function:

h(t) = −
δS(t)
dt

S(t)
(5)

See T. Lancaster, 1992, pp. 6-10.
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differences in regulatory and policy framework, and specificities of the technological

environment. Moreover, given that the firm size is reported to have mixed effects

on R&D productivity we also control for the size of company (Abrantes-Metz et al.,

2004).

We adopt two modelling strategies: (i) the single risk hazard model; and (ii) the

independent competing risks model. For both of them, we use the Proportional

Hazard (PH) (Van den Berg, 2001) specification as the estimation strategy, with

the assumption that there is no unobserved heterogeneity (τ = 1).

Single risk hazard model

In the single risk hazard model, we consider the transition to success or failure as

the process of interest:

hji (t,X, τ) = h0(t)θ(X)τ = h0(t)θ(X) (8)

where hji (t,X) is the hazard rate for failure from state i, where i ∈ {d, p1, p2, p3},
and X a set of relevant observable characteristics, that vary across calendar time.

Also, h0(t) denotes the baseline hazard and θ(X) the systematic part of the hazard.

The hazard function is allowed to differ across projects through the systematic part

θ(X). This means that the population of projects is assumed to be homogeneous

with respect to the systematic factors that affect the distribution of T . θ(X) gives

the shape of the hazard function for any given project and can be specified as:

θ(X) = exp(X′β) (9)

It is possible to consistently estimate β in the exponential part of the model, even

though the baseline hazard function h0(t) is left unspecified. This ensures that

the fitted model will always give estimated hazards that are non-negative. The

interpretation of the coefficient of β is that it measures the effect on the log hazard

of a unit change in the value of X at time t. The PH specification model allows

for a non-parametric baseline hazard h0(t). The latter is a function representing

the duration dependence through which the probability of failure changes with the

elapsed duration of one unit of time t.

We are interested in estimating θ(X), i.e. the systematic part of hji (t,X). hji (t,X)

measures the instantaneous rate of failure of the projects active at time t that fail

in the short interval from t to t + dt, in a large population of projects that are

homogeneous with respect to X. The β parameters are estimated consistently by

maximization of a partial likelihood function that does not depend on the base-
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line hazard function, which can be estimated non-parametrically (Lancaster, 1992).

Further detail on this can be found in Appendix.

Competing risks model

Even though the single risks model provides a good baseline analysis, the nature of

the R&D process is such that a project in a given state can either remain in that

state, move on to the next state or be abandoned. The possibility of the project

progressing to the next R&D phase impedes the occurrence of failure and can be

considered a competing event. Progression to the next R&D phase is not considered

as a censoring event (such as censoring due to loss to follow-up or no event at all).

For example, consider a project in discovery showing a progression to Phase 1 after

three years. The single risk hazard model considers this project as being at risk

of failing, even though it succeeds in progressing to the next R&D phase. In this

model progression to Phase 1 is indistinguishable from loss of follow-up in discovery,

and then considered censoring. In reality, though, a proportion of the projects

that are considered censored in the first model, have progressed to another R&D

phase (competing event), and therefore, should not be considered at risk of failing

in that specific R&D phase. The single risk hazard model described above fails to

mirror accurately this more realistic formulation of the R&D process. To address

these issues, we have considered as a second modelling strategy, the competing risks

model.

In the competing risks model, we consider two possible, mutually exclusive, desti-

nation states for each R&D project: failure and progression to the subsequent R&D

phase. In other words, observations are simultaneously exposed to several compet-

ing risks. This model imposes two assumptions. First, that failure is a permanent

condition that prevents future progression to any subsequent R&D phase (there is

no resurrection). Secondly, that we do not observe regression in the R&D progress,

i.e., a project cannot revert back from Phase 3 to Phase 2 of clinical trials. This

is a plausible assumption given the strong level of regulation in place at each R&D

phase.

Let Tj denote the time to the event of interest (failure), Tk, denote the time to the

competing event (transition to subsequent R&D phase), and Tc the time to no event.

Then the observed time-to-event T is given by

T = min{Tc, Tj, Tk} (10)

Because we only observe one (the first) event, and so the minimum T , the joint dis-

tribution of {Tc, Tj, Tk} cannot be identified by the data. Therefore, the probability
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of failure in t+ dt is given by:

h(t) = P (failure at time t | t+ dt) =

= P (t ≤ Tj < t+ dt | survival to t and all other {Tc, Tk} ≥ t+ dt) (11)

Formally, we model the transition rates θji (tj | X, τj) from state i to state j, with

j= failure and i ∈ {d, p1, p2, p3}, and the transition rates θki (tk | X, τk) from state

i to state k, with k 6= i, j and k ∈ {p1, p2, p3,m}, being the subsequent R&D stage

after stage i. The total number of projects that remain in the R&D pipeline at t

which depart to one of the two destinations is given by:

θi(t,X, τj) = θji + θki (12)

which gives us the sum of transition intensities over both destination states failure

j and subsequent R&D phase k. From there, we can calculate the contribution of

each destination stage to the hazard function.

Analogously to the single risks model, we model transition rates with the MPH

specification:

θi =

{
λj(tj)× θ0,j(X)τj , if j happens

λk(tk)× θ0,k(X)τk , if k happens
(13)

Where X stands for the set of observed project characteristics that differ across

calendar time, and {tj, tk} the unobserved project characteristics. Conditional on X,

the variables tj and tk are assumed to be dependent only if τj and τk are dependent.

So, in the case of independence of τj, τk, the model reduces to two unrelated ordinary

PH models of tj and tk where the baseline transition rates λj(tj) and λk(tk) are left

unspecified.

We considered two specifications of the baseline hazard in the competing risks model:

i) the first assumes that the baseline hazard for both types of risks (failure and pro-

gressing to next R&D phase) is identical; ii) the second assumes proportionality of

both baseline hazards. The advantage of using additional information about the

competing risk comes at a price, in the form of the assumptions needed to consis-

tently estimate the β parameters. First, we assume that both risks are independent,

after controlling for observed characteristics (Cameron and Trivedi, 2005). When as-

suming state independency and mutually exclusivity of the destination states, we can

estimate β by maximising the overall log likelihood of the two events parts. Details

about the specification of the log-likelihood can be found in Appendix. Secondly, we

are assuming that {tj, tk} are project-specific effects and distributed independently

of the regressors (exogeneity). Finally, the effects of the covariates X are assumed
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to be proportional (Van den Berg, 2001).

We run several specification tests after choosing which specifications are econom-

ically relevant, and those that minimize the Akaikes criterion (Akaike, 1974) (See

Appendix for more details). This criterion statistic is commonly used to compare

the quality of different models and/or models with different numbers of parameters

by assessing the trade-off between the goodness of fit and the complexity of the

model. We estimate the goodness-of-fit and test for the proportionality assumption,

which is a central assumption for our methodology (See Appendix). We use the

linktest that tests the proportionality-hazard assumption2 by interacting time with

the covariates and verify that the effects of these interacted variables are not differ-

ent from zero. We expect that the effects are not different from zero because the

proportionality-hazards assumption states that the effects do not change with time

except in ways that we already parametrized (with the semi-parametric function

of the baseline hazard). This is the nucleus of the proportional hazard diagnostics

(Hosmer et al., 2011) (See Appendix).

We also check for data outliers when evaluating the fit of the model. We use the

method of the efficient score residuals to identify observations with disproportionate

influence on the fit of the model and unusual configuration of covariates (Hosmer

et al., 2011) .

3 Data and variables

We have built a unique dataset by merging IMS Health R&D Focus of pharmaceu-

tical projects with World Bank data on country level population and GDP data.

We also use the Fortune ranking in 2007 and ScripIntelligence in 2011 to identify

top100 Pharmaceutical companies (in terms of revenues and profits) (Fortune, July

2009; Intelligence, 2013).

The IMS Health RD Focus contains information on global pharmaceutical R&D

activity from 1980 until 2012. The dataset contains all pharmaceutical projects

across all countries and therapeutic areas with information on the starting and

ending dates of each R&D stage, namely early discovery, Phase 1, Phase 2, Phase

2The proportional assumption is vital to the interpretation and use of a fitted proportional
hazards model. The proportional hazards model has a log-hazard function of the form

lnh(t,X, β) = lnh0(t) +X′β (14)

It assumes that a plot of the log-hazard over time would produce two continuous curves, one for
X = 0, that would be equal to ln[h0(t)], and the other for X = 1, which is lnh0(t) + β. The
difference between these two curves at any point in time are β, regardless of the shape of the
baseline hazard function (Hosmer et al., 2011; Cleves et al., 2010).
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3, and market/registration (states). Therefore, the dataset contains information for

each project for the time (in years) spent within each R&D phase (state duration),

including the abandonment of projects by the firm (which we label failure), and the

dates of transition between states. The dataset also records the timing of failure

of a project. Using this dataset, we constructed time-to-event data that preserves

transitions between different R&D stages, including the abandonment of a project,

and the timing of all events.

Each observation is a project-year (actually each project might have several targets

and we consider each target as a different project), reflecting the stage of develop-

ment in the R&D pipeline and the time spent in that stage. For each R&D stage,

a project is at risk of failure from the year of its first entry into that R&D stage.

If failure happens, then the project ceases being considered at risk in our analysis.

Also if a project moves to the subsequent R&D stage, then it ceases being considered

within the risk set for that R&D phase.

Each project is assigned to one of the 17 broad disease areas (for example, derma-

tological conditions) and one of the 199 more specific classes (such as anti-psoriasis

treatments) using the Anatomical Therapeutic Chemical (ATC) classification sys-

tem used by the European Pharmaceutical Market Research Association (EphMRA,

2013). Within this classification, drugs are classified into groups at five different

therapeutic levels. We have used the third level of the ATC code, which indicates

one from the total 262 therapeutic pharmacological subgroups to define the relevant

market, similarly to other papers in the literature (see, for example, Kyle (2006)).

Projects are broadly defined to include small molecules, monoclonal antibodies, pro-

teins, gene therapies, vaccines and immunotherapies, as well as fixed combination

products, biosimilars, in vivo imaging agents, and specialized delivery systems (IMS

Health, 2011). For this analysis we have considered only the projects that do not

present any biological component. Industry reports (PWC, 2011) show crucial dif-

ferences between the R&D process of non-biologics and biologics. Also, comparison

between these must be cautious given the differences in sample sizes, production

costs, development times and regulatory framework (DiMasi and Grabowski, 2007).

Finally, some projects are first observed in the database at an R&D stage different

from basic discovery. This is because information on pre-clinical stage is more dif-

ficult to get hold for very good reasons, as some pre-clinical research is not project

or indication-specific. This is one of the reasons for the limited literature on success

probability for preclinical stages (Paul et al., 2010). We accommodate this issue by

using appropriate modelling options in our semi-parametric models to account for

the left-censored data.

13



Variables

A complete list of variables labels and description can be found in Table 1. Our

dependent variable captures the occurrence of a failure for each project, conditional

on the R&D stage. Because we are separately modelling the R&D phases, four

dependent variables are constructed with the value of 1 if failure happens in one

of the phases {discovery, Phase1, Phase2, Phase3}, and the value for zero to the

non-occurrence of such an event (nothing happens, i.e. the project remains in the

same R&D stage as in the previous period).

[Table 1 here]

We have considered several explanatory variables. In particular, to proxy industrial

forces, we include competition in the final product market, competition within the

R&D process, intensity and type of alliances. To measure market size, we consider

population and GDP per capita. Finally, we have also included country fixed effects

to control for regulatory and technological environment country-specific character-

istics.

To measure competition we have followed Kyle (2006) by considering competition in

the final product market and within the R&D process. In particular, market com-

petition for each year is measured by: (i) the number of new drugs, i.e. established

in the market in the last five years (ii) the number of old drugs, i.e. established

in the market for more than five years for each relevant market. The five-year pe-

riod captures the exclusivity period that a NCE is granted by FDA that protects

it from new competition in the marketplace3. Competition in the R&D process for

each year is measured by the number of potential entrants in the same market, i.e.,

the number of projects being developed for the same market in each calendar year

(potential competitors).

To measure alliances we construct three variables to characterise the intensity and

type of alliances at project-level. Namely we consider: (i) the log number of firms

collaborating in the R&D project; (ii) the participation of a big firm in the R&D

project by characterising a big firm as one of the TOP100 firms (Big firm); and (iii)

the participation of academia in the R&D process (Academia participant).

To proxy market size one would, in principle, use global pharmaceutical sales data

by broad therapeutic area or disease level incidence rates. However, global pharma-

ceutical sales data is prohibitively costly. And, disease incidence levels are difficult

to find across all therapeutic areas and countries for the time span considered in

this analysis. Also, further concerns with endogeneity would arise if we would have

3New Drug Product Exclusivity provided by the Food, Drug and Cosmetic Act under section
505(c)(3)(E) and 505(j)(5)(F), also known as the Hatch-Waxman exclusivity amendments
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included them in our analysis given the important role that pharmaceuticals play

in reducing disease prevalence. Therefore, and following Kyle (2006), we have used

population size and GDP per capita (GDPpc) at country level from World Bank

data as proxies for demand. We have considered the GDP per capita (GDPpc) and

population (Population) of the country in which the R&D process takes place. This

is a plausible assumption, given the R&D distribution: concentrated in high-income

countries (US, EU and Japan account for more than 90% of the total projects) in all

R&D phases, and the almost negligible levels of relocation of the projects between

R&D phases (1.1% maximum of projects are relocated in our data). We also explore

non-linearity in population and GDP per capita to account for decreasing returns

to scale.

We further control for other covariates that can influence the R&D process. In

particular, we control for two relevant observable time-invariant attributes that have

been used in the R&D literature that characterise systematic differences between

the projects, namely: (i) the target therapeutic class (therapeutic class); and (ii)

the home country for the R&D of the project (targetcountry).

By considering systematic differences between therapeutic classes, we allow for dif-

ferent technological and scientific specific conditions in each therapeutic category

that could influence effort and the probability of failure (Mestre-Ferrandiz et al.,

2012).

The country-specific characteristics capture, among others, systematic differences in

regulatory and policy framework, and specificities of the technological environment.

4 Results

4.1 Descriptive statistics and nonparametric analysis

Our sample consists of 18,252 projects, 4,230 of which have failed. Table 2 sum-

marises the descriptive statistics across the years between 1980 and 2012 for failures

and successes, duration of the projects, competition, alliances and market size prox-

ies.

[Table 2 here]

The data is consistent with the most recent estimates on failure rates by Pammolli

et al. (2011). It shows a relatively higher proportion of failure (29.9%) for projects

in the preliminary stage of discovery than projects at later stages of the process.

This proportion decreases to around 14% in Phase 1 and Phase 2 of clinical trials.
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And, around 10% of the projects that are in Phase 3 trials fail to be launched in the

market. These numbers vary over time: higher annual percentage rates of failure in

the 1980s, mainly driven by the unsuccessful experience of the non-US projects, and

a declining trend in the late decade of 2000 (Figure 1). This may be partially due to

more ”births” of new projects: Figure 2 shows relatively higher annual percentage

rates of start-ups between 1980 and mid-1990s driven by the number of new projects

in the US.

[Figure 1 and Figure 2 here]

Also, when looking across ATCs, we observe that general systemic anti-infectives

(ATC code J) account for roughly 26.3% of the total cases of failure in the entire

R&D process. Moreover, looking closely at more refined 3rd ATC level categori-

sation, three ATCs concentrate the highest proportions of total failures: (i) anti-

neoplastics (ATC code L: Antineoplastic and immonumodulating agents) account

for more than 4.6% of total R&D failures; (ii) other central nervous system drugs

account for roughly 2% of total R&D failures ( ATC code N: Nervous system); and

(iii) antivirals for systemic use represent more than 1.8% of total R&D failures (ATC

code J: gGeneral anti-infectives) (Table 3).

[Table 3 here]

The mean duration of failures (5.82 years in discovery, 4.78 years in Phase 1, 5.52

years in Phase 2 and 5.59 years in Phase 3) is more than twice the mean duration

of successes (3.66, 2.22, 3.08, and 2.70 respectively). Also, failures face on average

fiercer competition than the average of successes: this is more pronounced when

looking at the mean number of new drugs in the market and competitors in the

R&D process. Moreover, failures experience on average lower degree of alliances in

all phases of the R&D process except in Phase 3 (1.43 against 1.69 firms in discovery,

1.43 against 2.08 firms in Phase 1, 1.65 against 2.46 firms in Phase 2 and 2.46 against

1.78 in Phase 3). The participation of a big firm and academia is relatively higher

in failures in early stages of development, when comparing to the successes. The

population and GDP per capita of countries with more failures are, on average,

higher than those with more successes.

We run log-rank tests to test for the differences in the relative survival experiences

of distinct groups that can be constructed by looking at different levels of each

covariate. The logrank test statistic compares estimates of the hazard functions of

these different groups at each observed event time (Cleves et al., 2010). For instance,

it compares the true hazard function of projects facing no market competition with

the true hazard function of projects facing competition at some level (for example,

1 competitor). Our results suggest that we can reject the null hypothesis that
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assumes no difference between the true survivor functions for the different groups

of drug projects that face different intensities of competition, as well as intensities

and type of alliances. Results from the non-parametric analysis support many of

the descriptive statistics results and anticipate our conclusions. The several Kaplan-

Meier (KM) survivor functions show survival estimates of projects that face different

levels of competition and experience different levels of alliances, across the R&D

phases.

The KM estimates suggest that projects facing higher levels of market competition

fail more quickly in the discovery and Phase 1 stages when competing with newer or

drugs longer established in the market (Figure 3). Also, projects tend to fail less in

the discovery stage when facing more competition within the R&D process (Figure

4). Results are less clear when looking at the other R&D stages.

[Figure 3 and Figure 4 here]

The survivor functions of all R&D phases are clearly inconclusive when depicting

the survival experience of projects with different intensities and types of alliances.

Projects with more than two collaborators fail more quickly but not as quick as the

projects that are developed solely by one company or by a large number of collabo-

rators (Figure 5). This suggests that there is an ”optimal” number of collaborators.

Moreover, projects in late stages of clinical trials survive more when involve alliances

with at least one big company (Figure 6). Also, academic partners seem to linked

with more successful projects in pre-clinical stages of development.

[Figure 5 and Figure 6 here]

These data and results form the basis for the semi-parametric analysis that follows.

4.2 Semi-parametric analysis

According to the efficient score residuals analysis criterion, we identify 17 drug

projects from a total of 18,270 projects, with disproportionate influence on the

fit of the model. These 17 drug projects correspond to 11 antineoplastic and im-

munomodulating agents, four drugs targeting the nervous system, one project re-

lating to anti-infectives and one for the musculoskeletal system. These correspond

to 235 project-year observations from a total of 102,935 project-year observations.

We have excluded these from our analysis. However, we have run the final analysis

without excluding these observations and results do not change qualitatively when

incorporating the omitted observations.

We run several specifications allowing for all possible combinations of time-invariant

and time-varying characteristics. The results for the several specifications remain
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qualitatively the same and are available from the authors upon request. All models

include year dummies and three levels of covariates we are interested in exploring:

(i) competition proxies (final product market competition from new and old drugs

and competition within the R&D process from potential competitors); (ii) alliances

(log of the number of firms collaborating, Big firm, and academia); and market size

(proxied by population and GDPpc, and nonlinearities of both).

We discuss the results of a specification model that introduces an interaction term

between the log number of firms and the presence of a big firm in the alliance,

controlling for year and therapeutic level fixed effects. This model does not fail the

linktest and respects the proportionality assumption.

Table 4 reports estimation results of single risk hazard model for all R&D phases,

whilst Table 5 shows estimation results of the competing risks model. Two spec-

ifications of the baseline hazard are considered in the competing risks model: the

first assumes that the baseline hazard for both types of risks is identical; the sec-

ond assumes proportionality of both baseline hazards. The results are robust across

both specifications of the baseline hazard. The results are robust across the differ-

ent models of the baseline hazard. However for presentation purposes we present

the results of the second specification of the hazard. All model specifications and

robustness checks are available upon request.

[Table 4 and Table 5 here]

Competition

The results of the single risk model show that more competition from new drugs

established in the market is associated with a significantly higher risk of failure of

projects before they reach Phase 3 of clinical trials. This result is robust across

all specifications except in two cases: when omitting the number of old incumbents

or the number of potential entrants. The effect seems to weaken when the project

reaches Phase 3 of clinical trials. The results of the competing risks model are

analogous to these; however they are only statistically significant in the discovery

stage. This seems to suggest that pressure from young incumbents is not significantly

different in influencing failure or success after the project passes the discovery stage.

Experiencing competition from drugs that have been longer established in the market

(old drugs) seems not to be correlated with the risk of failure of projects across the

R&D process. This is a robust result across the single and competing risks model

in all specifications.

Exposure to potential entrants in the market (competition within the R&D process)

is associated with lower risk of failure of drug projects in discovery and Phase 1 of
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clinical trials. This result is robust to all model specifications and both modelling

strategies. The same result is also found for Phase 2 but only for the single risks

model. Competition within the R&D process is not significantly associated with

failure or success in late stages of development.

Alliances

We have found weak evidence of a link between the level of alliances and drug R&D

failure. Our results demonstrate that increasing the number of collaborators in the

R&D process is associated with lower risk of failure in Phase 2 in the single risks

model. Still referring the results of the single risks model, there is some analogous

evidence for discovery and Phase 1 though not significant across all specifications.

In the competing risks model however the significance is not robust across all spec-

ifications.

This result is in line with the findings from the literature that report ambiguous

results regarding the role of alliances on R&D productivity (Danzon et al., 2005a,

2007; Hirai et al., 2010). In particular, Danzon et al. (2005a) find the greater the

number of firms collaborating in the project the higher the probability of success of

the projects only in Phases 2 and 3.

Ambiguous effects are found when considering the type of alliances. In the single

risks model, alliances with a big firm are related to higher risk of failure in discovery

but lower risk of failure in Phase 3 clinical trials. However in the competing risks

model, alliances with a big firm decrease the risk of failure in both phases.

Finally the introduction of the interaction term between the log number of firms

and the dummy that captures participation of a big firm reveals a nonlinear effect

of alliances in decreasing the risk of failure in Phase 2.

With respect to alliances with academia, in both the single and competing risk

models, research partnerships with academia are associated with a higher risk of

failure in discovery, and lower risk of failure in Phase 3 for the single risks model.

Market size

When looking at the effect of market size in the likelihood of failure, results are

qualitatively similar in both modelling strategies. However, and as in Kyle (2006),

neither population nor GDP per capita are significantly associated with failure. The

market size of the home country of the project is significantly associated with its

likelihood of failure.

However, when including a non-linear effect of population, by introducing population

squared to the specification model, the results show significantly lower risk of failure
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in discovery stage in more populated countries.

The results also show some non-linearity when introducing GDP per capita (GDP

per capita square) as a proxy for affordability at country level. This is more evident

when controlling for country-specific fixed effects. Projects being developed in richer

countries present a higher risk of failure in discovery stage than projects developed

in poorer countries. This is indicated by the negative coefficient of GDP per capita

squared. These results confirm evidence from the existing literature in this field (for

instance see Acemoglu and Linn (2004) or Dubois et al. (2011)).

Additionally, these results are in line with the regional innovation paradox referred

to in the innovation and economic growth literature: there seems to be an apparent

contradiction between the comparatively greater need to spend on innovation in poor

regions and their relatively lower capacity to invest in innovation related activities,

compared to more advanced regions (Barro and Sala-i Martin, 1992; Nelson, 1996;

Oughton et al., 2002).

These results may be capturing two effects: the relevance of the US on the worldwide

R&D activity, and the saturation of the market in higher income countries. The first

is related to the disproportionate proportion of projects started and failed in the

US. The second effect may be related to the fact that rewards to R&D investment

are likely to be higher in richer countries, so it may be more worthwhile taking the

risk of investment in richer rather than in poorer countries.

As a final remark, our results suggest significant effect of competition and alliances

on the rate of failure in two particular phases: discovery and Phase 2. These appear

to be two crucial stages of development where there are systematic differences be-

tween failure and progression to next R&D phase, as also shown by the competing

risks model.

5 Discussion and conclusions

This paper seeks to measure the association of competition and alliances with the

probability of failure in the different R&D phases using semi-parametric duration

models to model global R&D data.

Three important results emerge from our analysis. The first is that the determinants

of failure differ across the different phases of the R&D process. In particular, the

advocated role of competition and alliances as platforms for successful innovation is

not verified across all stages of the research process.

Secondly, we show competition to be significantly associated with failure in discov-
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ery and Phase 2 in two ways. Indeed, we find that the probability of failure of

a project declines in the number of potential competitors (competition within the

R&D). This may be due to the fact that the number of projects in a therapeutic area

signals a target where there is potential for incremental innovation, or unaddressed

health needs and scientific challenges that motivate further R&D investment. Also,

this effect may suggest the positive pressure to become the first to get patented and

launch in the market to recoup the investment in R&D (the ”escaping competition”

mentioned by Aghion et al. (2005)). Moreover, firms might be, not only, bene-

fiting from positive externalities, but also cooperating strategically to differentiate

themselves and therefore strategically abandoning projects in the pipeline in order

to focus on areas with reduced competition in the market. Furthermore, we find

that the risk of failure increases in the number of new drugs in the market (market

competition), i.e. the drugs that are fully enjoying the patent status. Our result is

specific to Phase 2 clinical trials. If prospect profitability signalled by the number

of competitors in the market is low then it seems natural that firms are keener in

abandoning the projects if Phase 2 clinical trials reveal that the drugs do not offer

a substantial advancement when benchmarked in terms of incremental effectiveness

with existing drugs.

Even though novel, both findings seem to be aligned with Kyle’s results that, by

focusing only on market launch, shows that competition from new incumbents re-

duces the probability of launching a new drug in the market; on the other hand,

drugs with more potential competitors are more likely to experience entry (Kyle,

2006).

In our analysis competition does not play any role in project abandonment in Phase

3 clinical trials, but it is associated with failure in discovery and Phase 2. These two

stages indicate two important milestones for the R&D process. Failing to successfully

complete the discovery stage implies that the drug does not satisfactorily pass the

”first toxicity dose” levels required to support administration to a human. This is

largely a scientific issue. On the other hand, Phase 2 trials are increasingly a large

financial commitment. Indeed, given the increased regulatory requirements in Phase

3 trials, firms have increasingly expanded the number of individuals in Phase 2 trials

in order to predict at an earlier stage whether it is commercially viable to proceed

to Phase 3 (Scannell et al., 2012). Failing to complete Phase 2 trials can reveal at

an earlier stage not only the lack of drug efficacy, particularly for therapeutic areas

with animal models of efficacy that are hardly predictive such as oncology (Kola and

Landis, 2004), but also, insufficient commercial differentiation from existing drugs

in the market (Arrowsmith and Miller, 2013). Since progressing to Phase 3 implies

a substantial financial commitment associated with large-scale clinical safety and

efficacy studies required for the ”launch decision” (Mestre-Ferrandiz et al., 2012)
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Phase 2 trials can be strategically used to unveil important information regarding

the likelihood of success of Phase 3 trials .

The third result suggests a mixed association between alliances and the probability

of failure of the projects, confirming the ambiguous findings of the literature.

At first sight, our results suggest that the qualitative effect of the number of collabo-

rators on failure seems to change across the different specifications and the different

phases of the R&D process. However, controlling for the firm size, a closer analysis

clearly shows that in Phases 2 and 3: (i) the risk of failure decreases in the number

of collaborators; (ii) the participation of at least one big firm company in the re-

search project is associated with a lower rate of failure of drug projects, particularly

in the transition from Phase 3 clinical trials to market launch; and (iii) that this

participation presents decreasing returns when extending the alliances protocol to a

greater number of participants, provided that we interact the log number of alliances

with the participation of a big firm.

These findings are more evident in the scaling up of clinical trials (Phase 3). At this

stage of the R&D process innovators must, not only focus on product development

and clinical trials, but also on a series of functional activities that ultimately lead to

a successful launch, including: scaling up manufacturing, logistics and distribution

processes, marketing effort, regulatory compliance, among others. The transition

to the market is therefore more likely to be successful with the alliances with big

firms that have established these capabilities over a long period of time. This result

is consistent with findings reported in the literature (Abrantes-Metz et al., 2004;

Mestre-Ferrandiz et al., 2012).

When looking at the partnerships with academia, we find that alliances with academia

are associated with increased risk of failure of projects in discovery. This may be

due to the fact that academia is normally engaged in exploratory research of riskier

targets and consequently areas in which it is harder to innovate, or even not commer-

cially appealing, normally funded by public money. For example, there is evidence

of academia being involved in various projects on the potential role of genomics

in fostering drug discovery in many tropical diseases (Gardner et al., 2002; Ridley

et al., 2006; Rosamond and Allsop, 2000). Other possible reasons may be linked to

the documented divergences of perspectives and interests of academia and industry

researchers that hinder successful collaborative effort (Siegel et al., 2003). These

divergences arise on a trade-off between disclosure and secrecy of knowledge in the

of patenting struture in drug discovery (Rhoten and Powell, 2007), and unveil the

conflicting objectives, work environments and scientific methodologies of both par-

ties (Munos, 2009; Perkmann and Walsh, 2007; Murray and Stern, 2007). Also,

firms might be acting strategically to benefit from positive knowledge spillovers
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from publicly-funded R&D projects (Cockburn and Henderson, 1998), while accept-

ing that the academic partner leads the R&D process and assumes an important

share of the risks.

Moreover, firms might have a higher incentive to strategically not reveal informa-

tion about failure in R&D projects (Reinganum, 1981; Dasgupta and Stiglitz, 1980;

Barzel, 1968), compared with academia, particularly in early discovery when targets

being tested do not need compulsory public registration.

The change in signs across R&D phases when evaluating the role of alliances on

failure could be related to the nature of the alliance that is not captured in our

models. There might be attributes of the alliances not available in our data that

may be masking important characteristics of the projects and/or nature and process

of the alliances that can contribute to the likelihood of the failure of the R&D project.

There are several caveats of our analysis driven by the quality of our data and the

lack of detailed data at firm level and project level. First, there is a potential problem

for selection bias: projects that fail may be systematically different in nature from

the ones that succeed, which means that unobserved characteristics of the drug

projects may be correlated with the level and intensity of competition, different

type of alliances or even market size. Secondly, we are not modelling failure as a

function of strategic behaviour of the firm and its competitors. Such analysis would

require firm and project level data that is unavailable in our dataset. In particular,

in our data, the majority of the projects are owned by several companies and we

cannot identify and measure the role and effort of each firm in the R&D process.

This fact restricts the use of firm-level fixed effects as a means to incorporate the

strategic behaviour of the firms in our analysis.

Finally, projects may clearly fail to complete a specific R&D phase due to sev-

eral reasons. Failure may be a combination of rejection by the regulatory bodies,

withdrawal by the firm, merger and/or acquisition by a competitor, or even scien-

tific/clinical non-achievement. With our data cannot separately identify the reasons

behind project abandonment.

Addressing these caveats requires data at firm and project level to be more readily

available for research. Many of these issues would be potentially solved with more

information about pharmaceutical companies, such as their financial accounts, their

patenting and licensing activities, and the clinical and financial risk of their R&D

portfolio. This information is not available which restricts our analysis. Despite

these caveats we retain our analysis as a novel and relevant insight into the nature

of the R&D process. This piece of work may contribute to the policy debate on the

presumed role of competition and alliances as platforms for successful innovation.
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Table 1: Definition of variables

Variable Definition Frequency

Competition from new drugs nr of new drugs in the market in the
same market

Count of drugs in market launched less than
5 years ago

Therapeutic class-year

Competition from old drugs nr of old drugs in the market in the
same market

Count of drugs in market launched more than
5 years ago

Therapeutic class-year

Potential competitors nr of potential competitors within R&D
process in the same market

Count of R&D projects in the same market Therapeutic class-year

Intensity of alliances Level of alliances Log of total number of collaborators Therapeutic class-year

Big firm participation TOP100 firm participant Project has at least one TOP100 firm collab-
orator (dummy variable)

Drug project

Academia participation academia participant Project has at least one academia collabora-
tor (dummy variable)

Drug project

Population, total Population Population in 10s of millions Country

GDP pc GDP per capita (constant 2000 US$) GDP per capita in US$1000s Country

Regulatory forces Targetcountry Country where R&D is based R&D phase-year25



Table 2: Descriptive statistics

Variables(mean) Discovery Phase 1 Phase 2 Phase 3
Total Failures Successes Total Failures Successes Total Failures Successes Total Failures Successes

Duration 3.48 5.82 3.66 2.48 4.78 2.22 2.7 5.52 3.08 2.24 5.59 2.7
#New drugs 6.06 13.61 8.04 7.21 18.28 10.18 6.69 17.72 10.37 7.59 21.91 7.65
#Old drugs 0.88 2 1.21 0.95 2.22 1.28 1.02 1.86 1.34 1.07 2.07 1
#New entrants 11.02 22.79 14.21 13.08 30.67 17.98 12.37 30.6 18.37 13.7 39.42 13.78
Population 1.7E+09 2.0E+09 1.8E+09 1.7E+09 1.9E+09 1.8E+09 1.7E+09 1.9E+09 1.8E+09 1.9E+09 2.3E+09 1.8E+09
GDP per capita 29058.1 31988.5 30052.2 29882.4 32233.5 30570.5 30734.4 32398.7 31483.5 30503.2 32320 30037.7
Intensity of alliances 1.65 1.43 1.69 2.05 1.43 2.08 2.24 1.65 2.46 2.87 2.46 1.78
Big firm 0.59 0.56 0.54 0.66 0.64 0.66 0.68 0.67 0.73 0.76 0.69 0.53
Academia 0.12 0.13 0.11 0.09 0.06 0.08 0.08 0.08 0.08 0.08 0.07 0.12

Nr of observations 54600 11109 9644 5789
Nr of drug projects 10952 3277 3257 444 2446 361 1597 148
Proportion of failures 29.90% 13.60% 14.80% 9%
Nr therapeutic classes 78
Years covered 1980-201226
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Table 3: Distribution of R&D activity and failure by therapeutic category

Total number of

R&D projects

Proportion of failures

as a proportion of to-

tal failures in each

ATC

Proportion of failures

as a proportion of to-

tal failures

Total number of projects: 18,252

Failed projects: 4,230

A: Alimentary tract and metabolism 1583 0.203

stomatologicals, mouth preparations, medicinal dentifrices etc 44 0.25 0.0006

drugs used in diabetes 645 0.203 0.0072

vitamins 5 0 0

anabolics, systemic 3 0 0

appetite stimulants 7 0.143 0.0001

other alimentary tract and metabolism products 124 0.129 0.0009

antacids, antiflatulents and anti-ulcerants 128 0.203 0.0014

functional gastro-intestinal disorder drugs 133 0.128 0.0009

antiemetics and antinauseants 66 0.167 0.0006

cholagogues and hepatic protectors 48 0.146 0.0004

laxatives 7 0.143 0.0001

antidiarrhoeals, oral electrolyte replacers and intestinal anti -

inflammatories

187 0.156 0.0016

antiobesity preparations, excluding dietetics 181 0.387 0.0038

digestives, including digestive enzymes 5 0.2 0.0001

B: Blood and Blood forming organs 653 0.247

antithrombotic agents 402 0.279 0.0061

blood coagulation system, other products 113 0.23 0.0014

anti-anaemic preparations 98 0.143 0.0008

all other haematological agents 40 0.225 0.0005

C: Cardiovascular system 1767 0.239
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cardiac therapy 538 0.251 0.0074

lipid-regulating/anti-atheroma preparations 302 0.265 0.0044

cardiovascular multitherapy combination products 3 0.334 0.0001

antihypertensives 151 0.212 0.0018

diuretics 40 0.3 0.0007

cerebral and peripheral vasotherapeutics 141 0.234 0.0018

antivaricosis/anti-haemorrhoidal preparations 3 0 0

other cardiovascular products 208 0.274 0.0031

beta-blocking agents 44 0.114 0.0003

calcium antagonists 137 0.182 0.0014

agents acting on the renin-angiotensin system 200 0.21 0.0023

D: Dermatologicals 631 0.17

antifungals, dermatological 39 0.051 0.0001

anti-acne preparations 65 0.138 0.0005

other dermatological preparations 132 0.227 16437

wound healing agents 110 0.164 0.001

anti-pruritics, inc. topical antihistamines, anaesthetics, etc 21 0.19 0.0002

nonsteroidal products for inflammatory skin disorders 188 0.17 0.0018

topical antibacterials and antivirals 57 0.14 0.0004

topical corticosteroids 19 0.263 0.0003

G: Genitourinary system and sex hormones 668 0.166

gynaecological anti-infectives 11 0.182 0.0001

other gynaecologicals 106 0.189 0.0011

sex hormones and products with similar desired effects, systemic

action only

198 0.217 0.0024

urologicals 353 0.133 0.0026

H: Systemic hormonal preparations (exc. sex hormones) 142 0.169

pituitary and hypothalamic hormones 32 0.125 0.0002

systemic corticosteroids 6 0 0

thyroid therapy 5 0.2 0.0001
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other hormones 99 0.192 0.001

J: General anti-infectives (systemic) 2626 0.263

systemic antibacterials 795 0.258 0.0112

systemic agents for fungal infections 181 0.309 0.0031

antimycobacterials 27 0.223 0.0003

antivirals for systemic use 1080 0.306 0.0181

sera and gamma-globulin 56 0.161 0.0005

vaccines 379 0.071 0.0015

other anti-infectives 108 0.528 0.0031

L: Antineoplastic and immunomodulating agents 4578 0.236

antineoplastics 3484 0.243 0.0463

cytostatic hormone therapy 137 0.212 0.0016

immunostimulating agents 359 0.12 0.0024

immunosuppressants 598 0.269 0.0088

M: Musculoskeletal system 970 0.252

anti-inflammatory and anti-rheumatic products 600 0.272 0.0089

topical anti-rheumatics 19 0 0

muscle relaxants 37 0.162 0.0003

anti-gout preparations 33 0.03 0.0001

other drugs for disorders of the musculo-skeletal system 281 0.263 0.0041

N: Nervous system 3184 0.25

anaesthetics 48 0.21 0.0005

analgesics 557 0.26 0.0079

anti-epileptics 158 0.19 0.0016

anti-parkinson drugs 166 0.188 0.0017

psycholeptics 520 0.25 0.0071

psychoanaleptics excluding anti-obesity preparations 434 0.182 0.0043

other cns drugs 1301 0.284 0.0202

P: Parasitology 143 0.217

antiprotozoals and anthelmintics 141 0.22 0.0017
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ectoparasiticides, including scabicides, insecticides and repellents 2 0 0

R: Respiratory system 928 0.209

nasal preparations 87 0.08 0.0004

anti-asthma and copd products 575 0.206 0.0065

cough and cold preparations 23 0.174 0.0002

systemic antihistamines 73 0.233 0.0009

other respiratory system products 170 0.282 0.0026

S: Sensory organs 379 0.135

ophthalmologicals 362 0.141 0.0028

otologicals 17 0 0
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Table 4: Parameter estimation results: Single Risks Model

Discovery Phase1 Phase2 Phase3

1.008*** 1.012** 1.018*** 1.005
Competition from new drugs

(-0.00152) (-0.00497) (-0.0057) (-0.00796)

1 0.999 0.999 1.006
Competition from old drugs

(-0.00201) (-0.00617) (-0.00716) (-0.00818)

0.996*** 0.994** 0.990*** 0.998
Potential competitors

(-0.000841) (-0.00276) (-0.00312) (-0.00449)

1 1 1 1
Population, total

(-3.71E-10) (-1.05E-09) (-1.17E-11) (-1.83E-11)

1 1 1 1
Population, total squared

(-4.55E-19) (-1.19E-18) (-1.36E-18) (-1.61E-18)

1 1 1 1
GDP pc

(-2.22E-7) (-6.54E-7) (-4.07E-7) (-7.26E-7)

1 1 1 1
GDP pc squared

(-3.83E-10) (-1.15E-09) (-7.83E-12) (-1.34E-11)

1.041 0.965 0.471*** 0.85
Intensity of alliances

(-0.0841) (-0.248) (-0.11) (-0.318)

1.282*** 1.107 0.871 0.457***
Big firm participating

(-0.0583) (-0.147) (-0.139) (-0.131)

1.160** 0.928 0.977 0.465*
Academia participating

(-0.0781) (-0.207) (-0.255) (-0.215)

0.807** 0.718 1.37 1.577
Big firm#Intensity of alliances

(-0.0743) (-0.198) (-0.381) (-0.679)

Fixed effects
Year dummies Yes Yes Yes Yes
Therapeutic area Yes Yes Yes Yes
Targetcountry No No No No

#Observations 41502 6990 5995 2817
#Projects 7811 1932 1437 857
#Failures 2856 344 276 102
Log likelihood -20917.4 -1965.3 -1534.7 -480
Akaike’s criterion 41914.8 4014.6 3167.4 1018
Goodness-of-fit 0.344 0.769 0.134 0.986
Proportionality assumption 0.6726 0.4404 1 0.094
Notes. Exponentiated coefficients; Standard errors in parentheses.
* p <. 10, ** p <. 05, *** p <. 01
The results refer to the reference case country USA, year 1990, and therapeutic
category Sensory organs.
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Table 5: Parameter estimation results: Competing Risks Model

Discovery Phase1 Phase2 Phase3

1.004*** 1.005** 1.005 1.001
Competition from new drugs

(-0.000976) (-0.00217) (-0.00277) (-0.0075)

1 1.001 1.002 1.001
Competition from old drugs

(-0.00133) (-0.0027) (-0.00398) (-0.00766)

0.998*** 0.997** 0.998 0.999
Potential competitors

(-0.000533) (-0.0011) (-0.00153) (-0.00432)

1.000*** 1 1 1
Population, total

(-2.14E-10) (-3.67E-10) (-4.81E-10) (-1.71E-09)

1 1 1 1
Population, total squared

(-2.45E-19) (-3.59E-19) (-5.45E-19) (-1.57E-18)

1 1 1 1
GDP pc

(-0.0000097) (-0.0000173) (-0.0000182) (-0.000076)

1 1 1 1
GDP pc squared

(-1.75E-10) (-3.25E-10) (-3.42E-10) (-1.38E-09)

0.949 1.12 0.826* 0.85
Intensity of alliances

(-0.0436) (-0.0888) (-0.106) (-0.0887)

0.912*** 0.948 0.995 0.610*
Big firm participating

(-0.0255) (-0.0511) (-0.0742) (-0.17)

1.132*** 0.896 1.031 0.946
Academia participating

(-0.0403) (-0.0758) (-0.0975) (-0.367)

1.162*** 1.063 1.454*** 1.389
Big firm#Intensity of alliances

(-0.0662) (-0.11) (-0.174) (-0.524)

3.78E-11 5.22E-23 4.97E-14 6.69E-21
Transition to next R&D phase

() () () ()

Fixed effects
Year dummies Yes Yes Yes Yes
Therapeutic area Yes Yes Yes Yes
Targetcountry No No No No

#Observations 87788 14925 12865 5627
#Projects 9129 2390 1856 1125
#Failures 7314 1741 1197 117
Log likelihood -57104 -11466.6 -7456.9 -553.4
Akaike’s criterion 114303.9 23035.3 15007.8 1188.9
Notes. Exponentiated coefficients; Standard errors in parentheses.
* p <. 10, ** p <. 05, *** p <. 01
The results refer to the reference case country USA, year 1990, and therapeutic
category Sensory organs.
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Estimation strategies

Partial likelihood

In the context of Cox proportional hazard model, we can estimate the relationship

between the hazard rate and explanatory variables without having to make any

assumptions about the shape of the baseline hazard function. This is called a semi-

parametric model. When recalling single risks model specification in Equation (8):

hji (t,X, τj) = h0(t) exp(X′β) = h0(t)θ(X) (15)

And using proportional hazard assumption together with other assumptions, it is

possible to estimate consistently β using partial likelihood method of estimation,

rather than maximum likelihood. Partial likelihood is used when there is no full

information on the form for the joint data distribution (Allison, 1984).

What differs from maximum likelihood is that instead of individuals or projects,

we are interested to model the occurrence of ordered (according to duration time)

events i.

We are interested to model the probability distribution of the duration of abandoned

projects T , for any particular drug project and regard ti as a realisation of the

random variable Ti for a project with characteristics of each drug project in the

sampleLancaster (1992). The sample Partial Likelihood is given by:

PL =
S∏
i=1

Li (16)

Li = P (project d has event at t = ti conditional on being in the risk set at t = ti )

To work out this probability, we need to use the rules of conditional probability

together with the fact that f(t)=h(t)S(t), and so the probability that an event occurs

in the tiny interval [t, t + δt) is f(t)dt = h(t)S(t)δt. Considering the illustrative

dataset in the following table:

Consider the event i = 4 with risk set d = {5, 6}. We can define

{
A = P (event experienced by d=5 and not d=6) = [h5(13)S5(13)δt][S6(13)]

B = P (event experienced by d=6 and not d=5) = [h6(13)S6(13)δt][S5(13)]

(17)

The probability of either A or B using the standard conditional probability formula
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Table 6: Illustrative dataset

Drug project #d Duration Td Event i

1 2 1
2 4 2
3 9 (no event censored)
4 11 3
5 13 4
6 14 (no event censored)

is equal to

L5 =
A

A+B
=

h5(13)

h5(13) + h6(13)
(18)

The survivor function terms cancel out. With this, we can derive all the other Ls.
For example, L1 = h1(2)

(h1(2)+h2(2)+h6(2)
.

All projects are in the risk set for the first event. Now let us apply PH model

specification, and we have:

L5 =
h5(13)

h5(13) + h6(13)
=

h5(13)θ5
h5(13)θ5 + h6(13)θ6)

=
θ5

θ5 + θ6
(19)

The baseline hazard contributions cancel out. Similarly,

L1 =
θ1

θ1 + θ2 + . . .+ θ6
(20)

And so on for all events. Given each Li expression, we can construct the complete

PL expression for the whole sample of events, and then maximise it to derive β. As

said before, the baseline hazard function is completely unspecified (Jenkins, 2005;

Lancaster, 1992). Also, to note that each Ls expression does not depend on the

precise survival time at which the sth event occurs, but only the order of events

affects the PL expression.

We also highlight the fact that the PH assumption implies that the hazard function

for two different projects has the same shape, differing only by a constant multi-

plicative scaling factor that does not vary with survival time. This assumption may

be tested.

Moreover, just to remember that we incorporate time-varying covariates. PL es-

timates the information at each event time. This means that covariates are only

evaluated during the estimation at event times, and so it does not matter what

happens to their values in between.
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Log-likelihood

In the case of competing risks model, when we consider two possible destination

(risk), the overall model likelihood value is the sum of the likelihood values for

each of the destination-specific models, θji and θki , recalling Equation 13. The log-

likelihood for the whole sample is the sum of this expression over all individual

records in the sample.

The log-likelihood is given by

lnL = {δj[ln θji ] + lnSj}+ {δk[ln θki ] + ln Sk(T )} (21)

Two main assumptions are taken to use this estimation method (Lancaster, 1992).

Assumption A. State independency. The chances of making transition

from the current state do not depend on transition history prior to entry

to the current state.

To estimate destination-specific hazard rates, there is a weak identification as-

sumption to hold: risks independence. This implies that h(t) =
∑
i=j,k

θi(t) or even

h(t;X) =
∑
i=j,k

θi(t;X).

That is, h(t | X) = θji (tj | X) + θki (tk | X) i.e. the hazard rate for transition to

any destination is the sum of the destination-specific hazard rates, controlling for X

observables. Once failure occurs, the failure to destination j has probability
θji (t)

θki (t)
.

Independence also means that the survivor function for transition to any destinations

can be factored into a product of destination-specific functions:

S(t) = exp[−
∫ t

0

h(u) du] = exp[−
∫ t

0

[θji (u) + θki (u)] du] =

= exp[−
∫ t

0

[θji (u)] du]× exp[−
∫ t

0

[θki (u)] du] = Sj(t)Sk(t) (22)

Assumption B. Destinations are mutually exclusive and exhaust the pos-

sible destinations. The individual sample likelihood contribution in the

independent competing risk model with two destinations is of three types:

A.1 Lj=transition to j, where Lj = fj(T )Sk(T )

A.2 Lk=transition to k, where Lk = fk(T )Sj(T )

A.3 LC=censored spell, where LC = S(T ) = Sj(T )Sk(T )
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Lj, the likelihood contribution summarises the chances of a transition to j combined

with no transition to k, and vice versa in the Lk case. The destination-specific

censoring indicators:

δj =

{
1 , if transition to j

0 , otherwise (either exit to k or censored)
(23)

The overall contribution from the individual to the likelihood, L, is

L = (L)δ
j

(Lk)δk(LC)1−δ
j−δk =

= [fj(T )Sk(T )]δ
j

[fk(T )Sj(T )]δ
k

[Sj(T )Sk(T )]δ1−δ
j−δk =

=

[
fj(T )

Sj(T )

]δj
Sj(T )

[
fk(T )

Sk(T

]δk
Sk(T ) =

= [hj]
δjSj(T )[hk]

δkSk(T ) = {[hj]δ
j

Sj(T )}{[hk]δ
k

Sk(T )} (24)

We can maximise the overall (log) likelihood by maximising the two component

parts separately. The overall model likelihood value is the sum of the likelihood

values for each of the destination-specific models. The log-likelihood for the whole

sample is the sum of this expression over all projects in the sample.

ln L = {δj[ln θji ] + lnSj } + {δk[ln θki ] + ln Sk(T )} (25)
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Akaike’s criteria

Akaike’s (AIC) criteria: for each model specification the value is computed as:

AIC = −2 × (log-likelihood) + 2(p + 1 + s), where p denotes the number of co-

variates in the model and s = 1 for the Weibull and log-logistic models (Akaike,

1974; Hosmer et al., 2011).

Testing goodness-of-fit and proportionality assumption

As a specification test and a measure of goodness-of-fit, we use the link test which

basically regresses on and, where now the original model regressors are omitted. It

tests whether the coefficient of is zero under the null hypothesis (Cleves et al., 2010;

Hosmer et al., 2011).

We use the link test to interact a function of time on time-varying variables and

test whether their coefficients are zero under the null hypothesis (Hosmer et al.,

2011). We carry out the log-rank test that assumes under the null hypothesis that

the different groups hazards functions are similar, where the groups are defined by

the different level of covariate X (Cleves et al., 2010).

The preferred method of performing this analysis is to compare the estimated pa-

rameter β̂X obtained from the full data with the estimated parameters β̂iX obtained

by fitting the model to the n− 1 observations remaining after the ith observation is

removed. If β̂X − β̂iX is close to zero, then the ith observation has little influence on

the estimate (Cleves et al., 2010).
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