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Abstract

Learning curves in health are of interest for a wide range of medical disciplines, for mul-

tiple types of healthcare providers and policy makers. In this paper, we distinguish between

three types of learning when identifying overall learning curves: static learning, learning

from cumulative experience and human capital depreciation. In addition, we approach the

question of how treating more patients with specific characteristics improves provider perfor-

mance. Information on the role of subgroups has the potential to better inform new or low

outcome providers on how to improve. Statistically however, capturing all subgroup experi-

ences in one analysis introduces strong collinearities among regressors. To soften collinearity

problems, we explore the use of Lasso regression as a variable selection method and Theil-

Goldberger mixed estimation to augment the available information. We use data from the

Belgian Transcatheter Aorta Valve Implantation (TAVI) registry, containing information on

the first 860 TAVI procedures in Belgium. Ultimately, we find evidence for both overall

and subgroup learning effects: for 2-year survival, we find that the probability of survival is

increased by about 0.16%-points for each additional patient treated. For adverse events like

renal failure and stroke, we find that an extra day between procedures increases the prob-

ability for the these events by 0.12%-points and 0.07%-points respectively. These overall

effects are then split into subgroup effects where we find evidence for positive learning effects

from physicians’ experience with defibrillation, hypertension and the use of certain types of

replacement valves during the TAVI procedure.
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1 Introduction

The idea of a relationship between volume and performance of healthcare providers is well-

known, but uncertainty remains about the source of this relationship. In this respect, the issue

of learning by doing or cumulative learning is most frequently encountered in empirical research.

Economic research additionally considers economies of scale, human capital depreciation, reverse

causality, level of specialization and social learning or “learning by watching” as factors that

drive volume-outcome relationships [Ho, 2002, Gaynor et al., 2005, Huesch, 2009, Hockenberry

and Helmchen, 2014, Lee et al., 2015, Mesman et al., 2015]. Data collinearities however hamper

inference so that theoretical arguments lead most studies to include a subset of these effects.

Although unintended, this may lead to ill-guided scientifically inspired drastic policy measures.1

Common policies are volume thresholds for hospitals, report cards and team/provider training

[Huesch and Sakakibara, 2009]. In this paper, we analyze multiple factors simultaneously and

we emphasize the potential role of patient subgroups in the learning process. This approach

provides extra nuanced and conservative information on where improvements may be made by

healthcare providers [Bridgewater et al., 2004].

In this paper we uncover effects from static learning, learning from cumulative experience and

learning from recent experience. Cumulative experience refers to the number of patients that

have been treated in the past, whereas learning from recent experience evaluates the role of time

since the last procedure. For CABG (coronary artery bypass graft) and PTCA (percutaneous

transluminal coronary angioplasty), cumulative learning has been found to only play a minor

role [Ho, 2002, Gaynor et al., 2005]. In contrast, learning from recent experience, which is

also termed human capital depreciation, seems to be important for CABG [Hockenberry and

Helmchen, 2014]. Static learning or economies of scale are total volume effects; hospitals with

more patients are likely to be better equipped and to have better standardized procedures.

Economies of scale have been found to be important for both CABG and PTCA [Ho, 2002,

Gaynor et al., 2005].

Following the literature, we first disentangle these overall learning effects. Subsequently we

follow a data-driven approach to detect learning mechanisms in patient subgroups. Given that

performance is affected by recent and cumulative experience, these effects may well be driven by

patient subgroups. More specifically, we assess how treating more patients with certain subgroup

characteristics influences overall health outcomes. Quantifying such information goes beyond the

typical volume-outcome relationship and improves insight on how to improve health outcomes in

lower volume, new or underperforming providers. The information allows to better identify the

source of learning and to transfer relevant knowledge to health policy makers and practitioners.

It stimulates to pay attention to certain subgroup specific complications and it provides more

insights for less intuitive outcomes. For typical outcomes like in-hospital mortality, physicians

may have a general feeling on how to improve performance. This is however much less the

1See the example of Huesch and Sakakibara [2009] in Bristol where surgical volumes were concentrated in one

hospital without complementary care facilities in the same hospital. The resulting disastrous outcomes were fully

contributed to learning effects while in fact the organization of care was to a large extent insufficient.
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case for other outcome variables like long-term mortality or procedural characteristics. These

results are a first step towards efficient knowledge transfer and it should then be investigated if

these effects are due to: 1) a change in severity of characteristics over time, or 2) adjustment of

physician practice due to these patients.

Existing studies mostly explore subgroup effects from a different point of view, namely

how volume impacts on subgroup health. The difference is nuanced but important. In our

setup, learning effects in the overall population can be attributed to certain subgroups while

other studies look at which subsamples are influenced by volume. Whereas the former has the

potential to help improve performance in new, underperforming or small providers, the latter

informs policy makers on how to concentrate procedures in hospitals. Some examples related

to subpopulation effects in trauma care are Matsushima et al. [2014] where larger volumes

of geriatric patients were associated with lower mortality and complications among geriatric

patients. Larger non-geriatric volumes were associated with higher odds of major complications.

In Pasquale et al. [2001], higher-volume centers were more successful in treating patients in seven

out of nine injury types [Caputo et al., 2014].

Our data covers all patients in Belgium that underwent a transcatether aorta valve implanta-

tion (TAVI) between 2007 and 2012 – the very first patient with TAVI in Belgium was treated in

2007. For TAVI, experience has been shown to have an impact on mortality (30-day and 1-year),

duration of procedures, contrast volume and radiation [Möllmann et al., 2015, Alli et al., 2012,

Kempfert et al., 2012]. Although these findings are based on descriptive analyses, they provide

suggestive evidence. In this study, the overall learning effects are analyzed while controlling for

a broad range of patient- and procedure-specific characteristics, as well as hospital fixed-effects.

Overall we find that different learning processes apply for different outcomes: while cumu-

lative and static learning significantly affect 24-month and 36-month survival, learning from

recent experience is significant for several Major Adverse Cardiac and Cerebrovascular Events

(MACE). These events occur as a result of situations occurring during the procedure. In partic-

ular, our results suggest an increase in 24-month survival of 0.16%-points for every extra TAVI

patient treated. Likewise, 36-month survival is increased by 0.30%-points. Furthermore, the like-

lihood of renal failure or a cerebrovascular stroke is increased by 0.12%-points and 0.07%-points

respectively for every additional day since the last TAVI procedure.

While multicollinearity is a well-known statistical issue when attempting to identify overall

learning curves, it is even more problematic for subgroup effects. By treating more patients over-

all, by definition also more patients are treated within specific subgroups (e.g. with renal failure

or porcelain aorta). Therefore, another important contribution of this paper to the learning

curves literature is that we propose two methodological approaches on how to disentangle these

(subgroup) learning effects. In particular, we employ variable selection and data-augmenting

methods: firstly, we single out relevant predictors for two-year mortality using Lasso regression

[Tibshirani, 1996]. Secondly, in a Bayesian spirit, we apply Theil-Goldberger mixed estimation

to add objective information to the model to soften multicollinearity problems [Theil and Gold-

berger, 1961]. Theil-Goldberger estimation allows the inclusion of prior information on a sum
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of coefficients which is central to identify subgroup learning effects. Subgroup learning effects

for 24-month survival are found for patients with aortic aneurysm, atrial fibrillation, carotid

disease, hypertension, porcelain aorta, NYHA category three and transfemoral access. That is,

treating more patients with these characteristics positively or negatively influences 24-month

survival. We will see that this can be attributed to increased knowledge from these subgroups

or to selection effects.

The remainder of the paper is organized as follows: in section 2 we discuss the data (Belgian

TAVI registry) and variables. In section 3 we discuss the identification strategy and substantive

questions of the paper. In section 4, we present our main results for the overall and subgroup

learning effects. Section 5 continues with robustness checks before we draw final conclusions in

section 6.

4



2 Data

This study makes use of the Belgian TAVI registry. This dataset contains detailed information

on the first 860 patients undergoing TAVI in Belgium in 23 different centers. The dataset holds a

wide range of control variables on patient- and hospital-specific characteristics and hospital iden-

tifiers. Specifically, we have information on the demographic background of patients, different

comorbidities, indicators for the severity of the cardiac problem and procedural characteristics

(see section 3.1 for more details on the background characteristics). Moreover, there is an ex-

tensive follow-up on mortality throughout time. The patient outcomes we study are 24-month

and 36-month survival, as well as indicators for major adverse cardiac events (MACE) including

renal failure, pacemaker implantations and stroke. Renal failure is known to be related to the

use of contrast volumes during the TAVI procedure. Furthermore, stroke can be seen as an

procedure induced event and pacemaker implantation is mostly related to the type of valve that

is used. In fact, two types of valves are used in Belgian hospitals: CoreValve and SAPIEN

replacement valves2.

Table 1 gives a preliminary descriptive overview of the potential learning effects. Patients

are divided in two categories according to physician experience. In the low experience group

physicians treated at most 30 patients, in the high experience group more than 30 patients

were treated before. On a bivariate level, we find little evidence that experience affects health

outcomes. Only for pacemaker implantation we find that the high experience group obtains a

pacemaker more frequently.

Table 1: Descriptive Learning Effects

Variable Patients z-score

≤ 30 > 30

Alive after 2 years 0.708 0.720 -0.351

MACE - Pacemaker 0.124 0.189 -2.360

MACE - Renal Failure 0.122 0.142 -0.767

MACE - Stroke 0.046 0.026 1.338

Notes: The test statistics are based on the comparison of proportions for “large samples”

and were estimated using the Stata command prtest. This procedure is similar to the usual

t-test, but it accounts for the binomial distribution of the underlying variable to calculate

standard errors [Moore et al., 2009]. The division at 30 patients is based upon the mean,

which is close to 30, and also the paper by Alli et al. [2012] which shows a plateau after 30

patients.

2CoreValve and SAPIEN are brand names for two types of Transcatheter Heart Valves used for TAVI in

Belgium.
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Furthermore, in Figure 1 below a positive relationship between experience and 2-year survival

provides first evidence for possible learning from cumulative experience effects in the data.

Note also that the quadratic and linear fits are nearly identical which points toward a linear

relationship between 2-year survival and cumulative experience3. These positive learning effects

are further reinforced by our parametric coefficient estimates which are all statistically significant

different from zero across different model specifications (see section 4).

Figure 1: Preliminary Learning from Cumulative Experience Curves
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In addition, Figure 1 clearly shows a positive association between pacemaker implantations

and cumulative experience. This suggests that as more patients are treated, they are more

likely to receive pacemakers during the TAVI procedure. Again, we find positive and highly

significant learning from cumulative experience effects regarding pacemaker implantations also

in our regression models which condition on a wide range of patient- and procedure-specific

covariates. This finding is most likely driven by the use of CoreValve valves in the larger centers

because CoreValve valves are known to be associated with pacemaker implantation. In contrast

to that, the figures for the adverse events of stroke and renal failure do not provide evidence

for the existence of learning from cumulative experience as the rate of these events is roughly

constant across all experience levels.

3As a logical consequence, we approximate the relationship with linear probability models (LPM).
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Turning the focus to learning from recent experience, we explore the bivariate relationship

of the number of days since the last procedure and different MACE. In line with the findings

of Hockenberry and Helmchen [2014], one would expect that the probability of mortality or

major cardiovascular events should be increasing with temporal distance to the last procedure.

Physicians’ skills may suffer from a spell without practice which makes them more likely to make

suboptimal decisions or mistakes during procedures (human capital depreciation hypothesis).

This line of reasoning is supported for renal failure and stroke as depicted in Figure 2 below.

In both cases, we observe a slightly positive relationship between the number of days since

the last procedure and the likelihood of renal failure or stroke. This suggests the presence of

human capital depreciation regarding adverse events. These findings are again confirmed by our

regression models below which are providing evidence for positive and significant learning from

recent experience effects. As for 2-year survival and pacemaker implantations the linear and

quadratic fits diverge and thus the presence of human capital depreciation effects is unclear in

this context and is therefore further explored below.

Figure 2: Preliminary Learning from Recent Experience Curves
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Note that the number of days since last performing TAVI ranges from a minimum of zero

days to a maximum of 408 days with a mean value of roughly 26 days (median 14 days) in

between procedures. The distribution of the temporal distance to the last TAVI procedure in

the overall sample is shown in Figure 3 below.
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Figure 3: Histogram of Days Since Last TAVI Procedure
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Notes: The Figure shows the distribution of the days since the last TAVI procedure and is overlaid

with a kernel density estimate (solid dark blue line).

3 Methodology and Substantive Questions

Several overall learning and volume effects are distinguished on mortality and major adverse

cardiac events (MACE) including renal failure, stroke and pacemakers. Three key questions

arise: First, does overall hospital volume, which is related to equipment and facilities, have

an impact on patient outcomes (static learning effects)? Second, do providers improve long

term patient outcomes as more patients are treated in a hospital (learning from cumulative

experience)? Third, does provider performance erode over time regarding patient outcomes

(learning from recent experience)?

Subsequently, we broaden our scope to learning curves for patient subgroups. This again

evokes two substantive questions: First, when treating more patients, do providers get better at

treating subgroups? Second, when treating more subgroup patients, do providers get better in

their overall care provision? Unlike the existing literature [Matsushima et al., 2014], this paper

focuses on the second question as it is most relevant for the general population and because it

provides useful information to transfer knowledge to policy makers and practitioners.
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3.1 Overall Learning Curves

We estimate linear probability models (LPM) to capture the overall learning effects. Following

Huesch and Sakakibara [2009], we distinguish between three types of learning: static learning

[Huckman and Pisano, 2006, Gaynor et al., 2005, Ho, 2002], learning from cumulative experience

[Bridgewater et al., 2004, Ho, 2002, Karamanoukian et al., 2000] and learning from recent expe-

rience [Hockenberry and Helmchen, 2014, Ramanarayanan, 2008, Huckman and Pisano, 2006].

Using patient-level data, we estimate models of the following form:

Outcomei,h,t = β0 + β1Static V olumeh,t + β2Cum V olumei,h,t

+ β3Time since last procedurei,h,t + α′1Xi,h,t + θ′1Hh + εi,h,t
(1)

Our outcome variables are binary indicators for the 24-month or 36-month survival rates

and MACE indicators for pacemaker implantation, renal failure and stroke for patient i treated

in hospital h in year t. Static V olumeh,t measures the annual number of procedures in hospital

h in year t picking up static scale effects. The rationale here is that high-volume hospitals are

more likely to be better equipped and that they have improved processes of care and better

standardization of procedures [Gaynor et al., 2005, Ho, 2002]. Cum V olumei,h,t is the patient

number for individual i in hospital h in year t reflecting learning from cumulative experience or

hospital-specific learning by doing [Ho, 2002]. This variable indicates how much the treatment

of an additional patient improves provider performance. Time since last procedurei,h,t is the

amount of days that have passed since the last TAVI procedure for patient i in hospital h and

year t and captures the above mentioned learning from recent experience or human capital

depreciation effect. It is sensible that the longer the time between procedures, the more skills

suffer from absence of practice [Hockenberry and Helmchen, 2014]. Note that β2 and β3 can also

be interpreted as the impact of practical skills and increased knowledge respectively.

Besides our three main volume and time indicators, we control for a vector of patient- and

procedure-specific characteristics Xi,h,t which includes information on the demographic back-

ground of a patient (age, gender), comorbidities (indicators for various heart diseases, diabetes,

renal failure, angina and existing pacemaker), the severity of the cardiac problem (NYHA cate-

gories, ejection fraction, aortic valve area, peak and mean gradient), as well as procedure-specific

characteristics (type of valve and size of valve). We control for these observable characteristics as

they have been identified in the literature to be key determinants of mortality [Holt et al., 2007].

Conditioning on all these factors allows us therefore to isolate the different types of learning

effects outlined above. In addition, we include a vector of hospital fixed-effects Hh to account

for time-invariant unobserved factors such as quality of care and hospital management quality

that potentially differ across hospitals and affect the outcomes of interest. Finally, εi,h,t is a

classical error term capturing all unobserved time-varying factors such as genetic endowment

and health behaviors of patients that also explain our outcomes of interest besides the included

explanatory variables.

Time fixed-effects can also be added to the empirical specification to capture “learning-
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from-watching” and technological improvements. However, similar to Ho [2002], adding year

fixed-effects would result in highly collinear effects. Leaving out the time fixed-effects from our

models then necessitates interpretation of other learning effects as upper bounds on the true

effects because they may pick up part of the positive effect of technological improvements over

time.

Typically, endogeneity may arise because of selective referral. In principle, overall outcomes,

if publicly known, may cause more patients to select into certain hospitals. There is mixed

evidence on the direction of causation. Gaynor et al. [2005] and Ho [2002] found that the

causal direction mainly runs from volume to outcome. However, Ramanarayanan [2008] found

that sicker patients may select higher volume providers. In the Belgian setting, with very little

information on hospital quality, and with even less information on procedure related hospital

quality, it is unlikely to find that outcomes cause volume ruling out reverse causality issues.

Moreover, by splitting up the learning effect in subgroups, at least part of the selection effect is

removed from the overall effect. We return to this statement later in this paper.

3.2 Multicollinearity and Subgroup Learning Curves

In the subgroup analyses all variables from the overall curves are retained and the experience

variables are further divided in more detailed groups. For 2-year survival, experience variables

are added for all background characteristics. If for example the 30th patient for a provider

(hospital) is the 15th patient with hypertension for the same provider, the patient gets patient

number 30 and experience for hypertension 15. Statistically these variables are likely to be

strongly correlated4 and this multicollinearity then results in highly insignificant values. By

treating more patients overall, also more patients with renal failure, porcelain aorta, etc. will

be treated.

To deal with multicollinearity, two general solutions are often proposed: firstly, the selection

of a subset of variables remedies the consequences of multicollinearity by removing the collinear-

ities. Suppose two variables are highly correlated; removing one of the two variables from the

model causes the standard error of the coefficient on the remaining variable to drop significantly.

Therefore, we explore the use of the Least absolute shrinkage and selection operator (Lasso) to

obtain an optimal subset of experience variables.

Secondly, increasing information provides more evidence to disentangle even collinear effects.

This extra information may come from an increase of the sample size or from a restriction on

regression coefficients. In this light, we apply the Theil-Goldberger mixed estimation method to

introduce (uncertain) information on a sum of coefficients. Although variable selection methods

and the use of extra information have very different motivations, they can both be seen as

applications of constraints in a regression analysis. This is discussed in more detail throughout

the next sections.

4Correlations larger than 0.9 are no exception in our sample.
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3.2.1 The Least absolute shrinkage and selection operator (Lasso)

To select an optimal subset of regressors, multiple statistical approaches can be considered:

subset selection techniques such as forward- and backward-stepwise selection, forward-stagewise

regression or shrinkage methods including Ridge regression and the Lasso. Both selection meth-

ods improve the statistical analysis in terms of prediction accuracy and interpretation [Hastie

et al., 2009]. However, model selection goes at the cost of biased estimates. While the least

squares estimator is the best linear unbiased estimator (BLUE), there may exist biased esti-

mators which are more efficient. Shrinkage methods are based on the idea of shrinking single

coefficients or sets of coefficients towards zero which trades off lower variance for increased bias.

The sparseness of the resulting model also facilitates interpretation. Among all shrinkage meth-

ods, Lasso regression introduced by Tibshirani [1996], is favored in this paper because it is more

subtle compared to forward- and backward-selection while at the same time it provides sparser

results compared to Ridge regression. Technically, the Lasso minimizes the residual sum of

squares subject to the constraint that the sum of all absolute values of coefficients is below some

constant. Following Hastie et al. [2009] we have:

βlasso = a
β
rgmin

N∑
i=1

(yi − β0 −
p∑
j=1

[xijβj ])
2 s.t.

p∑
j=1

βj ≤ t (2)

or alternatively

βlasso = a
β
rgmin

N∑
i=1

(yi − β0 −
p∑
j=1

[xijβj ])
2 + λ

p∑
j=1

|βj |q (3)

where the first part of both equations simply finds the β′s for which the sum of squared

residuals is lowest. The second part states that the minimization is subject to the condition

that the sum of the absolute values of β should be lower than a predefined constant t. Whereas

the approach is similar to Ridge regression where a similar constraint is placed on the sum of

all squared coefficients, the geometric properties of the lasso sets more coefficients exactly to

zero [Tibshirani, 1996]. As such, the benefit of lasso is that it decreases variance while at the

same time providing a sparse model. Additionally, because it is not a discrete process in which

variables are added one by one, the lasso is less greedy than forward- or backward-variable

selection [Efron et al., 2004]. Lasso estimates can be obtained from the Least Angle Regression

Selection (LARS) algorithm which also provides more insight in Lasso. In the LARS algorithm,

the coefficient of the most correlated variable is increased until the point where a second variable

is equally correlated. From this point onwards, the coefficients of both variables are increased

until a third variable is equally correlated, etc. This procedure goes on until Mallows’ Cp

reaches a minimum which in turn provides the subset of variables that best predicts the outcome.

Adjusting the LARS algorithm by removing a variable (temporarily) from the active set when

the coefficient is set to zero in the LARS, generates the Lasso. Park and Casella [2008] work
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out the Bayesian Lasso approximation mentioned in Tibshirani [1996]. The constraint can be

implemented through Laplace priors and the estimates seem to lie in between the Lasso and

Ridge results.

The Lasso singles out the most significant variables that predict health outcomes while other

variables are excluded from the model. Next to the standard Lasso, we also employ some

modifications and extensions of the Lasso as a robustness exercise. Firstly, we use the Lasso to

select the subset of regressors and run OLS on this subset after Lasso. This approach is suggested

in Efron et al. [2004], Meinshausen [2007], Hastie et al. [2009] to reduce the bias and to allow for

a simpler interpretation of the coefficients. Secondly, we also restrict the Lasso by adding the

“main effects” first. That is, we add all variables except for the volume, learning and experience

variables (overall and on the subgroups). Then, controlling for all background information, we

search for the most relevant learning predictors using the Lasso5 [Efron et al., 2004]. Thirdly,

we run logistic Lasso regressions as our outcomes of interest are binary. Similarly to the Least

Squares Lasso, an L1
6 penalty on the absolute values of coefficients can be introduced to logistic

regression [Genkin et al., 2007].

3.2.2 Including prior information with Theil-Goldberger mixed estimation

Intuitively, multicollinearity is the occurrence of “undominated uncertain prior information”

[Leamer, 1973]. This definition points out that including extra prior information might soften

the multicollinearity problem. Including prior information may increase evidence in favor of a

certain hypothesis and it therefore reduces data limitations. Bayesian analysis, where the use

of priors is common, is criticized by many for its subjectivity in specifying prior information.

However, in this study, prior information from within the data can be used to estimate subgroup

effects. Intuitively it is clear that the overall cumulative learning effect, i.e., every time a new

patient is treated, the probability for a positive outcome increases, is the sum of all underlying

subgroup effects. The prior information we use in this study is thus that the combination

of subgroup effects adds up to the overall effect. Interesting in this regard is the Theil and

Goldberger [1961] mixed estimation method which uses GLS on an augmented dataset. In this

augmented dataset, the data is supplemented by a dummy observation with information on the

mean and variance of a (sum of) coefficient(s). This method of data augmentation has widely

received credit and gives very similar results as more complex methods using posterior sampling

[Discacciati et al., 2015]. In economics, data augmentation is broadly used in the VAR literature

under the name of “sum of coefficients prior” [Robertson and Tallman, 1999, Sims, 2005]. As the

name already suggests, the method of Theil and Goldberger is similar to a Bayesian analysis with

conjugate priors [Theil, 1963]. While it is applied in a frequentist framework, it is definitively

Bayesian at heart and adding the dummy observation is a straightforward way of doing it. As it

is known to do well in softening multicollinearity on the autoregressive components in the VAR

5This is done by using the residuals from a regression of the dependent variable on all main effects and to use

these residuals as the dependent variable in a Lasso regression on all subgroup effects.
6An L1 penalty is a constraint on the sum of absolute values as in equations (2) and (3). Alternatively, an L2

penalty is used in Ridge regression.
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literature, we follow the same approach here.

The Theil-Goldberger coefficients and variances, where prior and data information are effi-

ciently weighted in a GLS framework, are given by [Theil and Goldberger, 1961]:

β̂ = [X ′Ω−1X +R′Ψ−1R]−1[X ′Ω−1y +R′Ψ−1r] (4)

and

V (γ̂) = [X ′Ω−1X +R′Ψ−1R]−1 (5)

X is a n×k matrix of observations on independent variables; Ω is the n×n variance-covariance

matrix of residuals and Ψ is the variance-covariance matrix of the prior information. For prior

information on a sum of coefficients, the 1 × k vector R and the scalar r have to be specified.

For example, imposing a constraint on the sum of β1 and β2 could be achieved by specifying:

R = [1 1 0 · · · 0 0] (6)

r = [β1 + β2] (7)

As such, equations (4) and (5) are the result of applying GLS to the following two equations:

y = Xβ + u (8)

and

r = Rβ + v (9)

Equation (8) holds the relationship for the “real” data. Next, the real data is augmented with

an extra observation in the form of the constraint in equation (8). The information in (8) is

perfectly similar to the application of constraints in regression analyses. The main difference

however is that the constraint is not exact, meaning that there is some uncertainty about the

prior information (hence the Ψ matrix). To see how the internal information can be used here

as prior information; first consider a consistent (and linear) estimate of the learning curve:

mij = β0 + β1patnrij + β2(characteristic 1)ij + εij (10)

mij stands for two-year mortality for individual i in hospital j and patnr is the patient number

of an individual (e.g. patient number 1 in hospital 20). In equation (10), the coefficient on the

patient number β1 is consistently estimated using standard regression techniques. Now let us

think of a second model:

mij = γ0 + γ1patnrij + γ2(characteristic 1)ij + γ3(exper characteristic 1)ij + εij (11)

In this model (exper characteristic 1)ij is a variable taking the value zero for the first patients

until there has been one person with a certain characteristic (say characteristic 1). From then
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onwards, the variable (exper characteristic 1)ij takes on the value one and is not increased until

another patient with the same characteristic is treated. As such, the variable can be seen as

an experience variable for characteristic 1. In equation (10), β1 is a consistent estimate for the

increase in the health outcome every time an extra patient is treated in a hospital. In equation

(11), the same increase in health outcome for every extra patient is given by γ1 and γ3 at the

same time. That is, every time an extra patient is treated, health increases by γ1 and also with

approximately the amount γ3 × avg(characteristic 1). The increase with γ1 is obvious while

the second part is an increase of γ3 for every patient with characteristic one and on average

only avg(characteristic 1) of the patient population has the characteristic. As such on average,

every time an extra patient is treated, the outcome increases by γ3 × avg(characteristic 1). β1

in equation (10) can therefore be seen as the sum of γ1 and γ3 × avg(characteristic 1). The

translation of this prior theoretical knowledge to the matrices that define the constraint on the

sum of coefficients is as follows:

R = [1 avg(char1) 0 · · · 0 0] (12)

and

r = [β1] (13)

4 Results

This section gives an overview of the results for the estimated overall and subgroup learning

effects for different model specifications and estimation techniques. We start with the discussion

of the overall learning effects, where we distinguish between three types of learning: static

learning (economies of scale), learning from cumulative experience and learning from recent

experience (section 4.1). In the next step, we explore subgroup learning effects by means of the

Lasso and Theil-Goldberger mixed estimation (section 4.2).

4.1 Overall Learning Curves

We estimate the overall learning effects using linear probability models (LPM) for 24-month

and 36-month survival, as well as several Major Adverse Cardiac Events (MACE) including

pacemaker implantation, renal failure and stroke. We demonstrate robustness of our overall

learning effects by estimating three model specifications for each of the outcomes: model one

shows the plain overall learning effects for the three learning measures static learning (“An-

nual Volume”), learning from cumulative experience (“Patient Number”) and human capital

depreciation (“Days Since Last Procedure”; “Zero Days Since Last Procedure”); model two

adds patient- and procedure-specific characteristics as described above in section 3.1; finally,

in model three we include hospital fixed-effects. Note that we also replicate our findings using

probit/logit specifications to relax the implicit linearity assumption in the marginal probabil-

ity effects in the LPM. However, the average marginal probability effects are almost perfectly

identical to the results shown below reinforcing robustness of our findings.

14



The estimated overall learning effects on survival can be found in table 2 below: First,

we find a positive and significant effect on the patient number indicator for 24-month and 36-

month survival which points toward learning from cumulative experience across all three model

specifications. In fact, our final specification suggests that treating an additional TAVI patient

is associated with an increase in 2-year survival of 0.16%-points, ceteris paribus. Likewise,

36-month survival is increased by about 0.30%-points. These cumulative learning effects are

sizeable considering that patient volumes were increased on average by more than 10 patients

per year in the timespan from 2007-2012. This cumulative learning effect can be interpreted as

the result of a learning process in technical skills, but also in the selection process of patients.

More experienced teams might be better in selecting patients with a high probability of being

alive after 2 years. Also, in the very beginning of the procedure, operators might not yet be

aware of the limited potential of the procedure.

Table 2: Overall Learning Effects:

Survival

Outcome Variable 24-Month Survival 36-Month Survival

Specification (1) (2) (3) (1) (2) (3)

Annual Volume -0.0040** -0.0053** -0.0044 -0.0059*** -0.0071*** -0.0032

(0.0020) (0.0023) (0.0031) (0.0021) (0.0023) (0.0032)

Patient Number 0.0013* 0.0013* 0.0016** 0.0019*** 0.0021*** 0.0030***

(0.0006) (0.0007) (0.0008) (0.0007) (0.0007) (0.0008)

Time Since Last Procedure (Days) -0.0001 -0.0004 -0.0005 0.0001 -0.0003 -0.0005

(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)

Zero Days Since Last Procedure -0.0134 -0.0342 -0.0396 0.0240 0.0034 -0.0053

(0.0379) (0.0390) (0.0400) (0.0393) (0.0406) (0.0413)

Patient- and procedure-specific characteristics No Yes Yes No Yes Yes

Hospital fixed-effects No No Yes No No Yes

Number of Observations 854 780 780 854 780 780

Notes: Heteroscedasticity robust standard errors in parentheses: *** p < 0.01 ** p < 0.05 * p < 0.1.

Second, table 2 provides evidence for static learning as models one and two show negative

and highly significant coefficients on the annual volume measure. Note that “Annual Volume”

is only insignificant when hospital fixed-effects are included. The hospital fixed-effects pick up

volume effects persisting over time and therefore the yearly volume effects get insignificant when

including hospital indicators. Third, our estimates do not indicate that skill depreciation has an

effect on survival as our time difference indicators (“Time Since Last Procedure”; ”Zero Days

Since Last Procedure”) do not show any statistically significant coefficients.

In addition to the survival outcomes, we analyze learning curves regarding adverse cardiac

events. The results are summarized in table 3 below. While cumulative and static learning

showed to be significant for the survival outcomes above, skill depreciation is significant for

several MACE. We find that the likelihood of renal failure and stroke are both significantly

increased as time passes since the last TAVI procedure. To be more precise, our estimates
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suggest that the likelihood of renal failure after TAVI is increased by 0.12%-points for every

additional day since the last procedure, ceteris paribus. Less drastic is the human capital

depreciation in case of stroke. Here an additional day since the last procedure increases the

probability of suffering a stroke by about 0.07%-points. Again these skill depreciation effects

can be considered sizeable as the average number of days between procedures is more than 10

days across all hospitals and time periods. Regarding stroke, we also find that patients treated

on the same day (“Zero Days Since Last Procedure”) have a higher probability of getting a

stroke which may point out that the team loses concentration during the course of a given day.

However, this effect is not found for the other adverse events. As can be seen in the robustness

section, the results on MACE should be interpreted with care. These results are sometimes

driven by only a few extreme observations.

Table 3: Overall Learning Effects:

Major Adverse Cardiac Events (MACE)

Outcome Variable MACE Pacemaker MACE Renal Failure MACE Stroke

Specification (1) (2) (3) (1) (2) (3) (1) (2) (3)

Annual Volume 0.0011 0.0018 -0.0018 -0.0009 -0.0004 0.0007 -0.0007 -0.0004 -0.0012

(0.0017) (0.0018) (0.0031) (0.0015) (0.0017) (0.0025) (0.0009) (0.0008) (0.0011)

Patient Number 0.0012* 0.0013* 0.0009 0.0004 0.0004 -0.0001 0.0002 0.0003 0.0002

(0.0007) (0.0007) (0.0008) (0.0005) (0.0006) (0.0007) (0.0003) (0.0003) (0.0004)

Time Since Last Procedure (Days) 0.0000 0.0002 0.0003 0.0006 0.0009* 0.0012** 0.0002 0.0005 0.0007**

(0.0004) (0.0004) (0.0004) (0.0006) (0.0005) (0.0005) (0.0003) (0.0003) (0.0004)

Zero Days Since Last Procedure 0.0591* 0.0394 0.0497 0.0418 0.0482 0.0518 0.0165 0.0315* 0.0403**

(0.0327) (0.0325) (0.0331) (0.0314) (0.0316) (0.0336) (0.0174) (0.0182) (0.0194)

Patient- and procedure-specific characteristics No Yes Yes No Yes Yes No Yes Yes

Hospital fixed-effects No No Yes No No Yes No No Yes

Number of Observations 854 780 780 854 780 780 854 780 780

Notes: Heteroscedasticity robust standard errors in parentheses: *** p < 0.01 ** p < 0.05 * p < 0.1.

Summing up, we find that different types of learning apply for different outcomes. Cumu-

lative learning which might also be interpreted as increased knowledge is relevant for 24-month

and 36-month survival. For adverse events, more frequent practice plays a more important role

because skills required for preventing the events may depreciate over time as illustrated for the

occurrence of renal failure and stroke.

4.2 Subgroup Learning Curves

Knowing that there are different types of learning for different outcomes, it is interesting to

investigate to what extent patient subgroups with certain characteristics account for these over-

all effects. Table 4 below shows the estimates from a linear probability model (LPM) using

24-month survival as the dependent variable while controlling for all patient- and procedure-

specific characteristics and hospital fixed-effects. In contrast to the models estimated above, the

specification below also includes all the experience variables for each of the background charac-

teristics. The issue of multicollinearity is immediately apparent in the columns VIF which
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Table 4: Subgroup Learning Effects:

OLS Estimates

Outcome Variable: 24-Month Survival

Explanatory Variable Coefficient VIF Explanatory Variable Coefficient VIF

Annual Volume -0.0084* 8.26 Experience mydrocardial infarction -0.0115 -0.011

(0.0047) (0.0188)

Patient Number 0.0388 9138.33 Experience porcelain aorta -0.0125 23.07

(0.0488) (0.0261)

Time Since Last Procedure (Days) -0.0005 1.73 Experience renal failure 0.0107 72.67

(0.0006) (0.0171)

Zero Days Since Last Procedure -0.0427 1.59 Experience percutaneous coronary intervention -0.0055 142.91

(0.0399) (0.0203)

Experience female -0.0179 277.92 Experience pacemaker -0.0085 25.32

(0.0172) (0.0221)

Experience angina -0.0062 186.7 Experience stroke 0.0362 71.05

(0.0181) (0.0272)

Experience aortic aneurism -0.0750* 81.68 Experience mediastinal radiation -0.0062 33.54

(0.0398) (0.0470)

Experience atrial fibrillation -0.0197 172.28 Experience defibrillator -0.1262 7.34

(0.0224) (0.1181)

Experience carotis disease -0.0155 62.65 Experience CABG 0.0097 235.17

(0.0182) (0.0259)

Experience coronary artery disease 0.0085 649.49 Experience valvesurg 0.0428 28.25

(0.0217) (0.0543)

Experience chronic obstructive disease -0.0127 96.16 Experience CoreValve 0.0190 887.82

(0.0185) (0.0198)

Experience chronic heart failure -0.0053 378.21 Experience transfemoral access -0.0258 631.81

(0.0116) (0.0171)

Experience diabetes 0.0050 123.44 Experience smallest valve 0.0138 456.25

(0.0234) (0.0218)

Experience hypertension 0.0241 549.23 Experience medium valve -0.0117 912.86

(0.0156) (0.0336)

Experience nyhacat2 -0.0276 14.21 Experience large valve -0.0838 5.32

(0.0392) (0.0632)

Experience nyhacat3 -0.0313 22.63 Experience highef -0.0063 526.92

(0.0334) (0.0216)

Experience nyhacat4 -0.0047 472.23 Experience pulmonary hypertension 0.0043 108.04

(0.0393) (0.0113)

Patient- and procedure-specific characteristics Yes Number of Observations 780

Hospital fixed-effects Yes R2 0.1419

Notes: For the sake of brevity, the coefficient estimates on the patient- and procedure-specific characteristics and the hospital indicators are not shown in the table above. VIFs above

10 in bold. Heteroscedasticity robust standard errors in parentheses: *** p < 0.01 ** p < 0.05 * p < 0.1.
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display the Variance Inflation Factors7 for all variables. In fact, almost all experience variables

show VIF values above ten indicating serious multicollinearity issues. As a direct consequence of

the strong correlation among the regressors, standard errors are inflated leading to potentially

insignificant subgroup learning effects. Overall the results indicate both positive and negative

experience effects: for example, treating more patients with diabetes, renal failure or stroke

is associated with an increase in 24-month survival, though statistically insignificant. On the

other hand, treating patients for example with an aortic aneurism has a significant negative

effect on 2-year survival indicating that this subgroup might be carefully looked at for future

health improvements. Finding negative effects can be due to two facts: Firstly, “experience”

for a certain characteristic may be transferred from some subgroups to others where it actually

should not be transferred. Secondly, over time, “worse patients” with stronger manifestations

of the characteristic tend to be treated. In addition, the above results are consistent with our

findings in table 2 as we find statistically significant evidence for static learning even when

including all the experience variables. In sharp contrast to that, the cumulative learning effect

is no longer significant due of the strong correlation to all the experience variables as indicated

by the largest VIF on the patient number indicator.

4.3 Lasso Regressions

The Lasso selects those variables most correlated to the dependent variable and finds the subset

which has the lowest Mallows Cp. Similar to the Akaike information criterion, this criterion

chooses a model with the lowest sum of squared residuals but simultaneously punishes the

inclusion of extra variables. Whereas the Lasso succeeds in finding the most relevant subset

of variables, it simultaneously ignores the fact that the variables may typically pick up effects

from other variables. In this sense, some of the variables may in fact not be relevant, but

only become statistically significant because of their relationship with other characteristics.

Nevertheless, singling out the most relevant experience predictors might inform where to start

looking to improve health outcomes.

Table 5 below contains a range of Lasso-related specifications: In the first specification (1),

the usual Lasso is applied on 2-year survival to detect the subset of optimal predictors. Here

the Lasso reveals that the overall annual TAVI volume and three subgroup experience variables

are particularly relevant for survival: First, treating more patients with a porcelain aorta8 is

negatively associated with 24-month survival. Second, experience with defibrillation and using

CoreValve (Typevalve=1, 0 for Sapiens) replacement valves on the other hand seems to positively

affect patient survival. Whereas the CoreValve indicator is the most robust experience variable

across all specifications, valve types are constant within hospitals and might therefore pick-up

part of the learning differences between hospitals. Besides the subgroup experience variables,

the Lasso also identifies the annual TAVI patient volumes as a key negative predictor of 2-year

7The VIF for regressor k is defined as: 1
1−R2

k
, where R2

k is the R-squared from a regression of xk on all other

explanatory variables
8A porcelain aorta is a heavily calcified ascending thoracic aorta which may obviate usual aortic valve replace-

ment through that approach.

18



survival which is again consistent with the findings presented above.

In the second column, we use a simple linear regression model on the optimal subset of

predictors identified in column (1) to reduce the bias in the estimated Lasso parameters. A

comparison of specifications (1) and (2) clearly shows that Lasso shrinks’ the regression coef-

ficients towards zero as all the estimated parameters in (1) are smaller in absolute value than

in (2). More importantly however is that specification (2) reinforces the existence of subgroup

learning effects as now the coefficients on experience with defibrillation and CoreValve replace-

ment valves becomes statistically significant. In fact, both coefficients are strictly positive and

thus indicate that using a CoreValve during the TAVI procedure and being treated by a practi-

tioner with a lot of defibrillator experience has the potential to increase a patients likelihood of

long-term survival.

The third specification adds in a first step all non-experience and non-learning related vari-

ables and then finds that adding experience variables with the Lasso does not provide any

supplementary significant effects. Overall this indicates that we are not able to find substantial

and robust subgroup learning effects controlling for all basic variables by applying the Lasso.

This may indicate that the experience variables pick up parts of the effects of the basic variables

in specifications (1) and (2).

The results in columns (4) and (5) show the selection of optimal subsets of predictors for

two logistic Lasso specifications using different lambda parameters (these are the Lagrangian

penalties on the likelihood function)9. Model (4) uses the global optimum (λ=232) and (5)

uses a smaller value (λ = 100) to obtain more regressors because of a smaller penalty. In

model (5), we find again evidence for both positive and negative overall and subgroup learning

effects as the logistic Lasso exclusively selects learning-related variables: The effect on the static

annual volume shows the usual negative sign which can also found in specifications (1), (2) and

tables 2 and 4. Moreover, both specifications (4) and (5) provide again evidence for a positive

subgroup learning effect of using CoreValve replacement valves. Furthermore, specification (5)

adds two additional experience variables to the set of optimal predictors of 2-year survival,

namely experience with patients with a chronic heart failure, as well as using smallest size

valves in the TAVI procedure.

To summarize, the standard Lasso variables selection procedure suggests that especially using

more CoreValve replacement valves during TAVI procedures and increased physicians experience

with defibrillators play the most important role for 2-year patient survival. An interesting point

to stress here is that the positive subgroup learning effects on survival are driven by experience

with procedural-characteristics (type of valve implanted) and physician specific knowledge rather

than by the type of patient that is treated.

9See appendix A for a plot of optimal λ’s.
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Table 5: Subgroup Learning Effects:

Lasso Estimates

Outcome Variable: 24-Month Survival

Specification Lasso OLS on Lasso Main Effects first Logistic Lasso Logistic Lasso

(1) (2) (3) (4) (5)

Annual Volume -0.0014 -0.004* - - -0.012

Time Since Last Procedure - - - - 0.0002

Female 0.0125 0.028 0.028 - -

Atrial fibrillation -0.0379 -0.054 -0.052 - -

Carotis disease 0.0676 0.113*** 0.107** - -

Chronic obstructive pulmonary disease -0.0908 -0.115*** -0.112*** - -

Pulmonary hypertension -0.0392 -0.069** -0.095** - -

Porcelain aorta -0.0642 -0.107* -0.118* - -

Renal failure -0.0494 -0.074* -0.073* - -

Stroke -0.062 -0.101** -0.101** - -

nyhacat4 -0.0176 -0.038 -0.042 - -

CoreValve 0.012 0.035 0.324*** - -

Transfemoral access 0.0714 0.109*** 0.110*** - -

Medium valve -0.043 -0.112** -0.160** - -

Exper porcelain aorta -0.002 -0.006 - - -

Exper defibrillator 0.0343 0.074* - - -

Exper CoreValve 0.001 0.002* - 0.006 0.006

Exper chronic heart failure - - - - -0.006

Exper smallest valve - - - - 0.015

Hospital fixed-effects No No Yes No No

Number of Observations 780 780 780 780 780
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4.4 Theil-Goldberger Mixed Estimation

Whereas computation of the Lasso is relatively straightforward, the Theil-Goldberger (TG)

method is not standardly available in statistical software10. Computation requires the calculation

of the formulas in equation (4) and (5) (see section 3.2.2 above). Results of this computation

with a stochastic constraint are provided in specifications (4)-(6) in table 6 next to the OLS

results (specification (1)), constrained regression with an exact constraint (specification (2))

and GLS instead of the LPM with robust standard errors (specification (3)). For the Theil-

Goldberger estimation we also implement robust standard errors (specification (5)) and a GLS

form (specification (6)) for the non-augmented part. The latter refers to the use of weighted

least squares on the non-augmented data, i.e., the matrix Ω−1 is estimated to obtain a feasible

GLS estimate.

Overall, the results show that the jump from OLS to GLS contributes more in efficiency

terms than TG estimation in itself. As expected, the standard errors for TG are in between

standard errors of OLS and constrained regression (compare specifications (1), (2) and (4)).

The main effect of implementing GLS is that more variables turn out to be significant regres-

sors due to substantial reductions in standard errors. In contrast, the effect of implement-

ing the stochastic constraint on coefficients generates a limited impact on standard errors and

by extension on significance. However, there are some significant differences between mod-

els (3) and (6). Intuitively, the additional information that is added in the TG estimation

seems rather limited. Whereas there are no qualitative differences between the specifications

without GLS, we clearly observe differences in significance between the third and sixth speci-

fication (for an illustration see grey shaded bars in table 6): On top of experience with aortic

aneurysm (“Experience aortic aneurism”), carotis disease (“Experience carotis disease”), hyper-

tension (“Experience hypertension”), porcelain aorta (“Experience porcelain aorta”) and trans-

femoral access (“Experience transfemoral access”), we find additional significant effects for atrial

fibrillation (”Experience atrial fibrillation”) and New York Heart Association category 3 (“Ex-

perience NYHAcat3”) when using TG mixed estimation.

These findings should be closely scrutinized to find how experience translates in better out-

comes. In particular, we find evidence for positive learning effects on 2-year survival for treating

more patients overall (learning from cumulative experience), as well as treating more patients

with hypertension (subgroup learning). On the other hand, treating additional patients with

an aortic aneurism, atrial fibrillation, carotis disease, porcelain aorta or using the transfemoral

access route is associated with lower patient survival and thus indicating negative subgroup

learning effects. This evidence for negative subgroup learning strongly suggests the presence of

selection effects. Typically, patients with these adverse characteristics become more vulnerable

over time and thus more likely to die in two years’ time. In a sense, the division of the overall

10In Stata, the tgmixed command implements a limited version of the Theil-Goldberger mixed estimation

method. There is no option to include robust standard errors for the “real” data (which is a priori essential for a

Linear Probability Model) and there is no possibility to insert prior information on the sum of coefficients. Mata

program code is provided in appendix B to include these possibilities. The tgmixed command ado file was used

as a guide while writing this code.
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Table 6: Subgroup Learning Effects:

Theil-Goldberger Mixed Estimation

Outcome Variable: 24-Month Survival OLS Theil-Goldberger

Specification Robust OLS Constrained GLS Normal Robust GLS

(1) Regression (2) (3) (4) (5) (6)

Coef. R.S.E Coef. R.S.E Coef. S.E. Coef. S.E. Coef. R.S.E Coef. S.E.

Annual Volume -0,008∗ 0,005 -0,008∗ 0,005 -0,004 0,003 -0,008∗ 0,005 -0,008∗ 0,005 -0,004 0,003

Patient Number 0,039 0,049 0,034 0,043 0,071∗ 0,04 0,05 0,05 0,05 0,047 0,086∗∗ 0,036

Time Since Last Procedure (Days) -0,001 0,001 -0,001 0,001 0 0,001 -0,001 0,001 -0,001 0,001 0 0

Zero Days Since Last Procedure -0,043 0,04 -0,042 0,04 -0,013 0,035 -0,043 0,041 -0,043 0,04 -0,015 0,033

Exper female -0,018 0,017 -0,018 0,017 -0,017 0,015 -0,019 0,017 -0,019 0,017 -0,019 0,014

Exper angina -0,006 0,018 -0,007 0,018 -0,006 0,016 -0,003 0,018 -0,003 0,018 -0,002 0,015

Exper aortic aneurism -0,075∗ 0,04 -0,074∗ 0,04 -0,085∗∗ 0,034 -0,067∗ 0,038 -0,067∗ 0,039 -0,073∗∗ 0,03

Exper atrial fibrillation -0,02 0,022 -0,018 0,021 -0,028 0,02 -0,027 0,021 -0,027 0,021 -0,038∗∗ 0,017

Exper carotis disease -0,015 0,018 -0,016 0,018 -0,029∗ 0,016 -0,017 0,018 -0,017 0,018 -0,03∗ 0,015

Exper coronary artery disease 0,008 0,022 0,009 0,021 0,025 0,018 0,008 0,022 0,008 0,022 0,023 0,017

Exper chronic obstructive pulmonary disease -0,013 0,019 -0,013 0,019 -0,014 0,016 -0,015 0,019 -0,015 0,018 -0,015 0,015

Exper chronic heart failure -0,005 0,012 -0,005 0,011 0,001 0,01 -0,004 0,012 -0,004 0,011 0,003 0,01

Exper diabetes 0,005 0,023 0,004 0,023 0,013 0,02 0,007 0,023 0,007 0,023 0,016 0,018

Exper hypertension 0,024 0,016 0,024∗ 0,016 0,024 0,014 0,021 0,016 0,021 0,015 0,022∗ 0,013

Exper pulmonary hypertension 0,004 0,011 0,004 0,01 0 0,009 0,006 0,011 0,006 0,01 0,002 0,008

Exper myocardial infarction -0,011 0,019 -0,012 0,019 -0,013 0,016 -0,012 0,019 -0,012 0,019 -0,013 0,015

Exper porcelain aorta -0,013 0,026 -0,011 0,025 -0,038 0,021 -0,01 0,026 -0,01 0,026 -0,034 0,02

Exper renal failure 0,011 0,017 0,012 0,017 -0,003 0,015 0,008 0,017 0,008 0,017 -0,006 0,014

Exper percutaneous coronary intervention -0,006 0,02 -0,006 0,02 -0,017 0,018 -0,008 0,02 -0,008 0,02 -0,02 0,017

Exper pacemaker -0,008 0,022 -0,009 0,022 0,011 0,018 -0,012 0,022 -0,012 0,022 0,005 0,017

Exper stroke 0,036 0,027 0,037 0,027 0,01 0,024 0,035 0,027 0,035 0,027 0,008 0,022

Exper nyhacat2 -0,028 0,039 -0,027 0,039 -0,029 0,031 -0,036 0,043 -0,036 0,038 -0,04 0,028

Exper nyhacat3 -0,031 0,033 -0,031 0,033 -0,031 0,026 -0,039 0,039 -0,039 0,032 -0,042∗ 0,023

Exper nyhacat4 -0,005 0,039 -0,003 0,038 -0,011 0,03 -0,012 0,043 -0,012 0,038 -0,02 0,028

Exper mediastinal radiation -0,006 0,047 -0,004 0,046 -0,002 0,04 -0,007 0,046 -0,007 0,047 -0,004 0,037

Exper defibrillator -0,126 0,118 -0,126 0,118 -0,038 0,088 -0,112 0,106 -0,112 0,117 -0,026 0,082

Exper CABG 0,01 0,026 0,011 0,026 -0,012 0,021 0,013 0,026 0,013 0,026 -0,006 0,02

Exper valvesurg 0,043 0,054 0,043 0,054 0,05 0,051 0,056 0,054 0,056 0,052 0,067 0,046

Exper CoreValve 0,019 0,02 0,018 0,019 0,016 0,016 0,019 0,019 0,019 0,02 0,019 0,015

Exper transfemoral access -0,026 0,017 -0,026 0,017 -0,042∗∗∗ 0,014 -0,027 0,017 -0,027 0,017 -0,044∗∗∗ 0,013

Patient- and procedure-specific characteristics Yes Yes Yes Yes Yes Yes

Hospital fixed-effects Yes Yes Yes Yes Yes Yes

Notes: For the sake of brevity, the coefficient estimates on the patient- and procedure-specific characteristics and the hospital indicators are not shown in the table above.
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effect in all subgroups also splits up the selection effect of patients, providing more evidence of

where the selection mainly takes place. The overall learning effect may indicate improved skills

and knowledge as treating more patients improves patient outcomes.

Comparing these results with the Lasso results in Table 5 provides rather mixed evidence.

While both methods single out subgroup effects as important factors for survival, there is no

agreement on which subgroups are more relevant. In fact, the Lasso stresses the importance

of experience with procedural-characteristics (type of valve implanted) and physician specific

knowledge (defibrillation) for patient survival, whereas TG estimation identifies types of patients

that are relevant for learning. This finding may result from the fact that in the Lasso, some of

the variables pick up effects from others that are truly controlled for in the Theil-Goldberger

method or from the inappropriateness of the summation constraint on the subgroups. As a

consequence, we suggest to compare both Lasso and Theil-Goldberger mixed estimation results

and to interpret them with care. These results should then be further discussed and investigated

by policy makers and practitioners to improve survival.

5 Robustness checks

Throughout the text, a range of methods is used to assess the quality of different results. In this

subsection we verify the consequences of changes in the sample size. In table 7 we remove the four

largest hospitals one by one from the regressions with 2-year survival as dependent variable. The

results from these removals are to a large extent similar to the original regressions shown above

in table 2. In particular, for most regressions we find a significant positive effect of cumulative

experience on 2-year survival. At the same time, there is no evidence for learning from recent

experience and static learning on 24-month survival as essentially none of the coefficients is

statistically significant different from zero.

Table 7: Robustness Checks I:

Exclusion of the Largest Hospitals

Outcome Variable: 24-Month Survival

Excluding Hospital 12 Hospital 17 Hospital 19 Hospital 20

Annual Volume -0.0063* -0.0047 -0.0033 -0.0048

(0.0033) (0.0032) (0.0033) (0.0036)

Patient Number 0.0020** 0.0019** 0.0016 0.0016*

(0.0008) (0.0008) (0.0010) (0.0009)

Time Since Last Procedure (Days) -0.0003 -0.0002 -0.0007 -0.0005

(0.0007) (0.0007) (0.0007) (0.0007)

Zero Days Since Last Procedure -0.0271 -0.0134 -0.0556 -0.0448

(0.0422) (0.0422) (0.0441) (0.0434)

Patient- and Procedure-specific characteristics Yes Yes Yes Yes

Hospital fixed-effects Yes Yes Yes Yes

Number of Observations 708 707 659 680

Notes: For the sake of brevity, the coefficient estimates on the patient- and procedure-specific characteristics and the hospital indicators

are not shown in the table above. Heteroscedasticity robust standard errors in parentheses: *** p < 0.01 ** p < 0.05 * p < 0.1.
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Compared to 24-month survival, major adverse cardiac events regressions are more vulner-

able to minor changes in the sample size (table 8). We find that for renal failure, the effect

disappears when cases that were more than 100 or 150 days apart were removed. This implies

that the overall result is largely driven by very strong outliers that were more than 150 days

apart in treatment. For stroke, the result of human capital depreciation is not found for obser-

vations with fewer than 100 days’ difference. However, including observations with less than 150

days between procedures, the effect is sizeable. This means that once there are about 100 days

between procedures, the probability of suffering from a stroke during the operation is strongly

increased. These two events strongly point towards non-linearity of human capital depreciation

on MACE. As Theil-Goldberger mixed estimation is not fully appropriate for this kind of effects,

we solely apply TG to 24-months survival.

Table 8: Robustness Checks II:

Varying Time Since Last Procedure

Outcome Variable MACE Renal Failure MACE Stroke

Overall Timediff < 100 Timediff < 150 Overall Timediff < 100 Timediff < 150

Specification (1) (2) (3) (1) (2) (3)

Annual Volume 0.0007 0.0008 0.0005 -0.0012 -0.0015 -0.0012

(0.0025) (0.0025) (0.0025) (0.0011) (0.0011) (0.0011)

Patient Number -0.0001 -0.0001 -0.0001 0.0002 0.0003 0.0002

(0.0007) (0.0007) (0.0007) (0.0004) (0.0004) (0.0004)

Time Since Last Procedure (Days) 0.0012** 0.0009 0.0012* 0.0007** 0.0008 0.0012**

(0.0005) (0.0008) (0.0007) (0.0004) (0.0005) (0.0006)

Zero Days Since Last Procedure 0.0518 0.0460 0.0492 0.0403** 0.0430** 0.0545**

(0.0336) (0.0359) (0.0344) (0.0194) (0.0218) (0.0224)

Patient- and Procedure-specific characteristics Yes Yes Yes Yes Yes Yes

Hospital fixed-effects Yes Yes Yes Yes Yes Yes

Number of Observations 696 677 688 696 677 688

Notes: For the sake of brevity, the coefficient estimates on the patient- and procedure-specific characteristics characteristics and the hospital indicators are not shown in the table above.

Heteroscedasticity robust standard errors in parentheses: *** p < 0.01 ** p < 0.05 * p < 0.1.

Whereas a broad range of results is provided, several concerns remain. First, while in the

Belgian case there is little evidence for a causal relationship from outcome to volume, it would

have been better to include this in the analysis. To remove the endogeneity bias from selective

referrals, the literature employs instrumental variable methods. However, as our focus lies on

the subgroup analysis which includes a lot of experience variables, the number of instruments

required would make IV methods practically infeasible. Second, assuming effects to be linear

imposes a heavy strain on the analysis. If in fact the overall learning curve would be non-linear,

the specific structure of the experience variables may pick up these non-linearities. Graphical

intuition on this argument is provided in Appendix C. The combination of the Theil-Goldberger

and logistic models or a lot of quadratic terms is practically infeasible and there-fore this limita-

tion remains. Nevertheless, a linear approach provides a useful first insight in the decomposition

of learning curves.

6 Conclusion

In the last decades, a whole strand of the literature has contributed to learning, volume and scale

effects in healthcare provision. In this paper we explore both overall, as well as subgroup learning

curves using information on the first 860 Transcatheter Aorta Valve Implantations (TAVI) in
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Belgium. Considering overall learning, we distinguish between static learning, learning from

cumulative experience and learning from recent experience and assess their role for patient

survival and adverse cardiac events during the TAVI procedure. Overall, our analysis shows

that different types of learning apply for different outcomes: while cumulative experience is of

great importance for 24-month and 36-month survival, more frequent practice plays a key role

for adverse events like renal failure and stroke.

In addition, we attempt to extend the existing literature by exploring subgroup learning

effects which provide an extra instrument to potentially improve and explain provider perfor-

mance. Knowing that certain groups of patients contribute to the learning process gives more

detailed information for both policy makers and healthcare providers. The extra information

should be considered as a preliminary step between no volume-oriented policy and harsher mea-

sures such as concentration of procedures in only a limited amount of hospitals. Underlying

the overall effects of an increasing number of patients on outcomes are subgroup learning effects

for experience with using CoreValves replacement valves, hypertension, aortic aneurysm and

physicians experience with defibrillators – to name a few. Trying to improve processes of care,

these groups or techniques should be closely investigated. Increased knowledge from subgroups

and the transfer of this knowledge to other patients or a change in patient selection for TAVI

may drive these results.
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Appendix A: Logistic Lasso Plot

The plot is obtained from the R-function profL. The likelihood is maximized for a value of

λ = 232.

Appendix B: Stata/Mata code implementing the Theil-Goldberger

mixed estimation method

The codes are available upon request.
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Appendix C: Visual Intuition on Non-linear Effects

The left plot is an added variable plot that shows the curvature in the effect of patient number

on 2-year mortality. The right graph shows the cubic-like relationship between, e.g., patient

number and the experience variable for renal failure. As such, the experience on renal failure

may pick up the non-linearity of the overall patient number when assuming linearity.
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