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Abstract  
Treatment effect estimation must account for endogeneity, in which factors affect treatment 
assignment and outcomes simultaneously. By ignoring endogeneity, we risk concluding that a 
helpful treatment is not beneficial or that a treatment is safe when actually harmful. Propensity 
score matching or weighting adjusts for observed endogeneity, but matching becomes 
impracticable with multiple treatments, and weighting methods are sensitive to propensity score 
model misspecification in applied analyses. We used Monte Carlo simulations (1,000 
replications) to examine sensitivity of multi-valued treatment inferences to propensity score 
weighting or matching strategies. We consider four variants of propensity score adjustment:  
inverse probability of treatment weights (IPTW), kernel weights, vector matching, and a new 
hybrid that is easily implemented – vector-based kernel weighting (VBKW). VBKW matches 
observations with similar propensity score vectors, assigning greater kernel weights to 
observations with similar probabilities within a given bandwidth. We varied degree of propensity 
score model misspecification, sample size, treatment effect heterogeneity, and sample 
distribution across treatment groups. Across simulations, VBKW performed equally or better 
than the other methods in terms of bias and efficiency. VBKW may be less sensitive to 
propensity score model misspecification than other methods used to account for endogeneity in 
multi-valued treatment analyses.    
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1. Introduction 
Most propensity score guidance is restricted to methods for matching individuals with similar 
propensity scores across two groups (treatment, no treatment). Many treatments, however, have 
multiple levels. They may be continuous (drug dose) or categorical (several drug types). 
Consider, for example, a comparative effectiveness study that compares the ability of three 
interventions to prevent nursing home placement among individuals with functional and/or 
cognitive impairment: participant-directed home and community-based services, monthly home 
health aide services, and adult day care programs. If longitudinal data are not available, and if a 
valid instrumental variable is not available, a propensity score analysis that reduces bias due to 
observed confounding may be the best analytic strategy. In a traditional propensity score 
analysis, a series of dichotomous comparisons would be made: home and community-based 
services versus the other programs, home health aide services versus the other programs, home 
health aide services versus adult day care programs, and so on. 
 
However, restricting treatments to binary indicators obscures between-group differences, 
including nonlinear relationships between treatment level and outcome (Cattaneo 2010). For 
instance, a binary comparison of adult day care versus the other two programs may not show a 
large difference in nursing home placement rates.  However, if the three programs were to be 
compared simultaneously, one might find that adult day care is superior to home health aide 
services but not to participant-directed home and community-based services.  Accounting for all 
values of a treatment variable in a single equation (rather than using several equations to make 
binary comparisons) helps ensure that a propensity score for a multi-valued treatment leads to 
treatment effect estimation among patients who have a non-zero chance of receiving any of the 
values of the treatment (i.e., that the assumption of common support is valid) (Rassen et al. 
2013). For instance, in our example, a binary model of the probability of receiving participant-
directed services will not distinguish between patients who have a chance of receiving adult day 
health care or home health aide services from patients who have a chance of receiving adult day 
health care but zero chance of receiving home health aide services. Inclusion of patients who 
have zero chance of receiving home health aide services in the analysis violates the assumption 
of common support necessary for propensity scores to reduce observed selection bias. 
 
As the number of treatment groups increases, the option to estimate a single multinomial model, 
a generalized propensity score model, versus multiple binary models becomes more attractive. A 
generalized propensity score is the probability of receiving one treatment level, conditional on 
observed covariates. Each level is represented by a different propensity score (Imai & Van Dyk 
2004; Imbens 2000). 
 

The best way to use propensity scores for multinomial treatments is unknown; it is unclear when 
choice of a different weighting or matching strategy leads to divergent inferences. A popular 
method is inverse probability of treatment weights (IPTWs) based on the propensity score (e.g., 
McCaffrey, Griffin et al. 2013). However, IPTWs are sensitive to extreme values of the 
propensity score. If the extreme weights are caused by misspecification of the estimated 
propensity score model, use of IPTWs will lead to a biased estimate of the treatment effect. As 
the number of treatment groups increases, so does the likelihood of obtaining extreme values of 
the propensity score for at least one treatment group (Lopez & Gutman 2017).  
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Other options for incorporating generalized propensity scores into analyses include 
subclassification, matching, or kernel weights. Subclassification may not reduce selection bias as 
much as weighting when traditional numbers of strata (often 5) are used, and the optimal number 
of strata required to reduce selection bias may vary with sample size (Lunceford & Davidian 
2004; Stuart 2010). Matching across groups becomes increasingly impractical, though not 
impossible (Rassen et al. 2013; Ratkovic 2012; Lopez and Gutman 2017), as the number of 
treatment groups increases; covariate distributions may not overlap well across multiple groups.  
Kernel weights, in which weights are assigned to comparison observations within a given 
bandwidth of the treated observation’s propensity score, are less popular than IPTWs but 
minimize the influence of extreme weights (DiNardo & Tobias 2001; Garrido et al. 2014). 
However, there is little guidance to facilitate choice between IPTWs, matching, or kernel 
weighting.  
 
In empirical analyses, investigators often encounter situations that may affect the ability of a 
propensity score to reduce selection bias. Nonlinearity in the data generating process (DGP) for 
the true propensity score, number of treatment groups, distribution of sample across treatment 
groups, and treatment effect heterogeneity will interact to influence bias and efficiency of 
treatment effect estimates. The degree to which different weighting or matching strategies lead to 
robust inferences in messy empirical analytic scenarios with multiple treatment groups is 
unknown.  
 
Here, we examine the extent to which inferences are likely to diverge among four methods of 
matching or weighting on the propensity score. We examine IPTW and kernel weighting as well 
as one variant of matching (vector matching) that looks especially promising for reducing 
covariate imbalance in studies of treatments with multiple levels (Lopez and Gutman 2017).  
However, vector matching is relatively complex to implement. Finally, we introduce a hybrid of 
kernel weights and vector matching that is easier to implement, which we term vector-based 
kernel weighting (VBKW).  
 
In the following sections, we describe treatment effects of interest, weighting and matching 
strategies in greater detail, reasons we might expect inferences to diverge based on choice of 
weighting or matching strategy, and our Monte Carlo simulation design. We show that VBKW is 
an easy-to-use weighting method that improves bias relative to existing methods across a wide 
range of true propensity scores and distributions of the sample across treatment groups. 

 
2. Treatment effects of interest 
We are interested in bias and efficiency of average treatment effects (ATEs) and average 
treatment effects on the treated (ATTs). Again, consider a treatment with three levels: A, B, and 
C, and let E[YA] represent the estimated outcome when everyone in the sample receives level A. 
For this treatment, 3 ATEs (E[YA] - E[YB]; E[YA] - E[YC]; E[YB]- E[YC]) and 9 ATTs (each 
ATE evaluated among individuals who received a single treatment) can be estimated 
(McCaffrey, Griffin, et al. 2013). If the treatment effect is homogenous across the sample, the 
ATE and ATTs will be equal. In the more likely empirical case where treatment effectiveness 
varies by individual characteristics, the ATE and ATTs will not be equivalent. More formal 
definitions of our treatment effects of interest are presented in Appendix 1. 
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3. Weighting and Matching Methods  
3.1 Inverse probability of treatment weights (IPTWs) 
In IPTWs, observations receive weights equal to the inverse of their propensity scores (Hirano, 
Imbens, & Ridder 2003; Imbens 2004; see Appendix 1 for more details). Incorrectly estimated 
IPTWs may have extreme values, however, increasing treatment effect estimate variance (Stuart 
2010). IPTWs permit average treatment effect (ATE) calculation but can be modified to calculate 
average treatment effects on the treated (ATTs) by assigning treated individuals a weight of one 
(called “weighting by the odds” or standardized mortality/morbidity ratio weighting) (Hirano et 
al. 2003; Ellis et al. 2013; Stuart, DuGoff, et al. 2013).  We examined normalized IPTWs (Hirano 
et al. 2003). We do not consider IPTW adjustments such as trimming or truncating, as those 
methods employ arbitrary cut-points and may lead to estimates that are difficult to interpret 
(Harder, Stuart, & Anthony 2010; Stuart 2010; Lee, Lessler, & Stuart 2011).   
 
As in all propensity score analyses, IPTW analyses are restricted to the range of common 
support. For IPTWs, this is often operationalized broadly as including observations between the 
maximum of the minima and the minimum of the maxima of each treatment group’s propensity 
score (Caliendo & Kopeinig 2008). For instance, consider a treatment with three levels (A, B, 
C): 1) Find the maximum of the minima of the propensity score for treatment A (p(A)) across 
each treatment group, 2) Find the minimum of the maxima of p(A) across each treatment group, 
3) Drop any observation with a value of p(A) outside of the region identified by steps 1 and 2, 
and 4) Repeat steps 1-3 for p(B) and p(C) (Lopez & Gutman 2017).  
 
3.2 Kernel weights (KW) 
KWs permit ATT calculation by assigning treated observations a weight of one and assigning 
weights to comparison observations within a given bandwidth of the treated observation’s 
propensity score according to a kernel function (DiNardo & Tobias 2001). By doing this, KWs 
may have fewer extreme values than IPTWs. ATTs from different treatment groups can be 
combined to calculate ATEs. Treatment effect estimates from KWs are sensitive to the 
bandwidth, the range from a treated observation’s propensity score, used to construct the weight 
(Caliendo & Kopeinig 2008). Smaller bandwidths lead to more exact matches, which reduces 
bias. However, if the bandwidth is too small, fewer observations will be included in the analytic 
sample and variance will increase. For that reason, we considered a bandwidth identified as 
optimal because it has been shown to minimize mean squared error (MSE) of the estimated 
propensity score model over the sample without sacrificing smoothness of the estimator: a 
constant of 0.06 (Heckman Ichimura & Todd 1997).1 KWs are assigned according to kernel 
functions, where higher weights are given to comparison individuals with propensity scores most 
similar to treated individuals within the bandwidth. Weights are not as sensitive to choice of 
kernel function as they are to bandwidth (Caliendo & Kopeinig 2008), and we used the 
commonly used Epanechnikov kernel for all KW calculations (DiNardo & Tobias 2001; Busso, 
DiNardo, & McCrary 2009). The Epanechnikov kernel is the “optimal kernel” in that it 
minimizes MSE well at both interior and boundary points (Fan et al. 1997). Weights are 
normalized to sum to one in each treatment group (Imbens 2004; Busso et al. 2009).  
 

                                                           
1 In future work, we will explore the use of a bandwidth that is dependent on the standard deviation of the logit of 
the propensity score in our KW. 
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KWs are composed from observations with similar probability of treatment and similar 
probability of non-treatment. This could be interpreted as including observations with similar 
probability of all treatment levels, or as including observations with similar probability of 
receiving each of the treatment levels being compared. For a binary treatment, these two 
interpretations are equivalent. However, consider a multiple treatment case where we are 
interested in the effect of treatment A vs treatment B (but where there are others who received 
treatment C). In this case, weights could be constructed among observations with similar 
probability of treatment A and similar probability of treatment B, within the range of common 
support (so all observations have a non-zero probability of treatment A, B, and C). Alternatively, 
weights could be constructed among observations with similar probability of treatment A, similar 
probability of treatment B, and similar probability of treatment C (Lopez and Gutman 2017).  
We implement the first, broader, option in our KW construction. The second option relies on 
identification of similar vectors of propensity scores, which is part of vector matching (Lopez 
and Gutman 2017) and which we add to traditional kernel weight construction to create a new 
hybrid strategy, vector-based kernel weighting (VBKW).  
 
3.3 Vector matching (VM) 
As its name suggests, VM creates matches after identifying vectors of similar propensity scores 
across groups (Lopez and Gutman 2017). VM lends itself to the calculation of an ATT, but ATT 
estimates can be combined to create ATEs. Lopez and Gutman recently developed this procedure 
and found that it leads to better matches (lowest bias in covariate distribution among treatment 
groups) than common referent matching or IPTWs (2017). Matching within vectors ensures 
treatment effect estimates are applicable to observations with similar probability of receiving any 
of the treatments. However, this process becomes more difficult to implement as number of 
treatment groups increases, which makes it less likely that there will be available matches. 
 
VM identifies similar vectors of propensity scores two ways when creating a matched set: first, 
by clustering, and then, by 1:1 greedy matching with replacement (Lopez and Gutman 2017). 
The ability to create good matches relies on several steps. After dropping observations outside of 
the range of common support, Lopez and Gutman recommend refitting the propensity score 
model and using k-means clustering on the logit of the propensity score for each treatment group 
to create strata with similar vectors of propensity scores. Clustering and matching is repeated as 
many times as there are treatment groups (3 rounds of clustering and matching for a treatment 
with 3 groups). For a treatment with values A, B, and C, treatment group A serves as the first 
reference group. Within strata formed from clusters of observations with similar values of the 
logit of p(C), observations from treatment groups A and B are matched based on values of the 
logit of p(A). Matches occur within a caliper of 0.25*SD(logit(p(A))). Then, within strata formed 
from clusters of observations with similar values of the logit of p(B), observations from 
treatment groups A and C are matched based on values of the logit of p(A). The observations 
from treatment group A that matched to observations in both other treatment groups, as well as 
the matches from groups B and C are retained. Similar steps are repeated with treatment group B 
and treatment group C as the reference groups. VM creates different matched samples, 
depending on the treatment effects of interest. For instance, when the reference group is A, we 
can calculate the ATT of A vs B and the ATT of A vs C, among observations with treatment A.  
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3.4 Vector based kernel weighting (VBKW) 

In VBKW, weights are assigned based on a kernel function (as described above), but the weights 
are assigned to observations that have similar vectors of propensity scores for each treatment. 
VBKW includes elements of VM and kernel weighting, but it is simpler to implement than VM. 
No clustering or matching steps are required. Recall that in traditional kernel weighting, weights 
for an observation in treatment group A equal one, and nonzero weights for observations in 
treatment group B are assigned if their value of p(A) is within a bandwidth of .06 of the treated 
observation’s value of p(A). Values of p(B) and p(C) are not considered. In contrast, in VBKW, 
to ensure that weights are created for observations with similar vectors of propensity scores, we 
assign nonzero weights to observations in treatment group B if their value of p(A) is within a 
bandwidth of .06 of the treated observation’s value of p(A), and if their value of p(B) is within a 
bandwidth of .06 of the treated observation’s value of p(B), and if their value of p(C) is within a 
bandwidth of .06 of the treated observation’s value of p(C). This means that nonzero weights are 
assigned to controls with a similar propensity score vector instead of just being similar on p(A). 
Rather than creating several subsets of matches, as in VM, VBKW creates one single 
subpopulation, allowing for easier comparison of estimated treatment effects. As is the case in 
kernel weighting and VM, ATT estimates from VBKW can be combined to form ATEs.  
 

4. Reasons we might expect inferences to diverge based on choice of 
weighting or matching strategy 

As sample sizes approach infinity, results from any propensity score method should converge, 
but researchers need guidance for their use in finite empirical samples. We wish to identify 
scenarios in which inferences are most likely to diverge. For instance, we expect estimates from 
kernel weights (low emphasis on extreme weights) to be less biased than estimates from IPTWs 
when the true data generating process for the propensity score is nonlinear. We expect 
differences in inferences to be more likely when the presence of extreme weights is more likely 
or when identification of matches may be more difficult. We expect this to occur when: 1) the 
true propensity score includes more nonlinearity and nonadditivity, 2) the number of treatment 
groups increases, 3) the sample size decreases, 4) the sample is distributed more unevenly across 
treatment groups, 5) when there are heterogeneous treatment effects, and 6) when there is greater 
pre-weighting imbalance in observed covariates across groups2 (Lee, Lessler, & Stuart 2010; Lee 
et al. 2011; Rassen et al. 2013; Setoguchi et al. 2008).  
 

5. Methods 
We used simulated datasets to understand the relative ability of different propensity score 
matching and weighting strategies to reduce selection bias in treatment effect estimation. We 
ranked weighting and matching strategies’ ability to produce unbiased treatment effects.  
 
We began with a simulation design with a known data generating process so that we can isolate 
and identify the influence of weighting/estimation strategies and analytic scenarios on treatment 
effect estimates. We based our definitions of true propensity scores on an established simulation 
protocol where covariates are correlated and the true propensity score exhibits varying degrees of 
nonlinearity and nonadditivity (Table 1) (Lee et al. 2010; Wyss et al. 2014; Lee et al. 2011; 

                                                           
2 Simulations in which pre-weighting imbalance across groups is varied are planned but not yet completed. 
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Setoguchi et al. 2008; Austin 2012). In future studies, our simulation design will be extended to 
include plasmode simulations of empirical data, which will enable us to verify that the 
simulation results are not due to our choice of data generating processes.  
 
The initial true propensity score model was a multinomial logistic model of covariates (X1-X7), 
where X1-X4 were confounders and X5-X7 were associated with treatment only (Setoguchi 2008). 
All covariates except for X2, X7, and X10 were drawn from the standard normal distribution.  
Covariates X2 and X10 were drawn from a normal distribution with mean 1 and standard deviation 
1.  Covariate X7 was drawn from a normal distribution with a mean of -1 and standard deviation 
of 1.  Our outcome was a linear function of X1-X4, X8-X10, and treatment assignment (Lee et al. 
2010). The true ATEs, E[YA] - E[YB], E[YA] - E[Yc], and E[YB] - E[YC], were set to have values 
of: -0.1, -0.2, and -0.1, respectively.  The true ATTs were equal to the true ATEs when treatment 
effects were homogenous. Following Setoguchi et al. 2008’s protocol, we set X1 and X5 to have 
a correlation coefficient of 0.2, and X3 and X8 to have a correlation coefficient of 0.2. In addition, 
both X2 and X6 were set to have a correlation coefficient of 0.9, as were X4 and X9. After setting 
the correlation coefficients, X1, X3, X5, X6, X8, X9 were dichotomized (X1new = 0 if X1 ≤ x̅1, X1new 

= 1 if X1 > x̅1).  
 
To generate the true propensity score and create treatment groups, we calculated a multinomial 
logit model: 

p(A) =  1

1 + ⅇXβB+ⅇXβC
 

 
 

p(B) =   
ⅇXβB

1+ⅇXβB+ⅇXβC
 

 

p(C) = 
ⅇXβC

1+ⅇxβB+ⅇxβC
 

 
 
where XβB = .2*(-.2 + X1 + X2 + X3 + X4 + X5 + X6 + X7) 
 
and XβC =  -.9*(-.1 + X1 + X2 + X3 + X4 + X5 + X6 + X7) 
 
    
Coefficients in this model were selected to reflect magnitudes often present in empirical 
analyses, and that were similar to those used in other simulation studies involving treatments 
with multiple levels. We tested sensitivity of results when the coefficient magnitudes were 
increased from .2 to 1.2 (relative risk ratio (RRR) from 1.22 to 3.32) and from -.9 to -1.9 (RRR 
of .4 to .15) in the linear predictor functions of treatments B and C, respectively. Results were 
qualitatively unchanged. 
 
To assign observations to treatment groups, we generated a random number from the uniform 
distribution that represents probability of treatment (denoted by j). Observations were assigned to 
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treatment group A if j < p(A), to treatment group B if p(A) ≤ j < p(A) + p(B), and to treatment 
group C if j ≥ p(A) + p(B). In order for us to vary distribution of the sample across treatment 
groups (Table 1, line 3), we began with a sample size of 100,000. After generating treatment 
group assignment for the entire simulated dataset, we randomly drew observations from each 
treatment group. For instance, in our simulations of n=999 with equal treatment distribution 
across three treatment groups, we randomly drew 333 observations from treatment groups A, B, 
and C.  
 
For each true propensity score (all possible combinations of Table 1 characteristics), we used 
each weighting and matching strategy to estimate all possible ATEs and ATTs in sample sizes 
expected to occur in prospective observational cohort studies (n=999), and in administrative data 
analyses (n=9,999) of empirical health services research questions. Each simulation consisted of 
1,000 replications. Analyses were conducted in Stata version 14 (StataCorp 2015).  
 
Here, estimated propensity scores were calculated using maximum likelihood estimation 
(multinomial logit regression) on the main effects of X1-X4 and X8-X10.  Differences in 
inferences from weighting strategies when other estimation strategies are employed are left for 
future work (covariate balancing propensity scores [Imai & Ratkovic 2014], generalized boosting 
methods [McCaffrey, Griffin, et al 2013]). 
 
5.1 Outcomes 
When varying simulations by 7 propensity score model misspecifications, 12 estimands, 3 types 
of sample distributions across treatment groups, and 3 types of treatment effect distribution, (7 x 
12 x 3 x 3), we obtain 756 unique analytic scenarios from which to compare performance of our 
estimators. Across each scenario, we evaluated bias and efficiency. For each ATE and ATT, we 
measured bias (distance between the true treatment effect and mean estimated treatment effect, 
where smaller distances represent less bias). We also calculated percent bias (bias as percent of 
standard deviation) (Kang & Schafer 2007). Efficiency of each treatment effect estimate was 
evaluated by interquartile range (IQR) magnitude, root-mean-squared error (RMSE), and mean 
absolute error (MAE). We counted the number of analytic scenarios in which each matching and 
weighting strategy produced estimates where bias was < 40% of the standard deviation, an 
indication of situations in which test statistics are still likely to perform well (Kang & Schafer 
2007). Among those scenarios, we ranked matching and weighting strategies by efficiency.  
 

6. Results 
We focus here on results from simulations where n=999 and the number of treatments (denoted 
by k) =3. Preliminary results from simulations where n=9,999 and k=3, and from simulations 
where n=999 and k=4, show similar patterns of bias and efficiency as those we report here. The 
magnitude of differences in bias and efficiency as sample size or number of treatment groups 
increases will be described as the study progresses. 
 
6.1 Overall performance of IPTW, KW, VM, and VBKW 
When n=999 and k=3, estimates based on IPTW were more likely to be biased and inefficient 
than estimates based on KW, VM, or VBKW (Table 2). Of the 756 analytic scenarios we ran for 
IPTW, only 221 (29.2%) produced estimates where bias was less than 40% of the estimate’s 
standard deviation. VBKW-based estimates, in contrast, are the most likely to be unbiased and 
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efficient. VBKW produced estimates where bias was less than 40% of the estimate’s standard 
deviation in 73.3% of the analytic scenarios. 
 
Across all estimates (Table 2) and across estimates with <40% bias (Table 3), VBKW produced 
the most efficient estimates (median RMSE among estimates with <40% bias = .058, median 
RMSE from other strategies ranged from .066 - .080). 
 
6.2 Sensitivity to misspecification of the propensity score model 
Regardless of weight type, the least biased and most efficient estimates were observed when the 
true propensity score included only additive main effects. As expected, bias was greatest when 
the true propensity score included moderate nonlinearity and nonadditivity (scenario G) that 
were not captured in the estimated propensity score model.  
 
IPTW produces similar results to the other techniques in ideal settings (true propensity score 
only includes additive main effects, homogenous treatment effect, equal distribution of sample 
across treatment groups), but it is more sensitive to propensity score model misspecification than 
any of the other methods we examined (Figure 1; Appendix 2). The median absolute bias of 
estimates produced by VBKW is less sensitive to propensity score misspecification than in 
IPTW, KW, or VM (Figure 2). 
 
6.3 Sensitivity to distribution of sample across treatment groups 
Again, VBKW estimates were the least sensitive (smallest changes in percent bias, as well as the 
lowest overall percent bias) to variations in the distribution of the sample across treatment groups 
(Figure 3). The magnitude of IQRs changed similarly across all weighting and matching 
strategies as treatment distribution became more skewed. 
 
6.4 Sensitivity to treatment effect heterogeneity 
In the presence of homogenous treatment effects and heterogeneity due to a non-confounding 
variable, both VBKW and VM were more likely to produce estimates with bias < 40% of 
standard deviation than IPTW or KW (details for heterogeneous treatment effects available from 
authors). As expected, in the presence of heterogeneity due to a confounder, all strategies were 
likely to produce biased estimates of the ATEs.  
 
6.5 Performance across different estimands 
When treatment effects were homogeneous or heterogeneous with respect to a nonconfounding 
variable, VBKW and VM were more likely to produce estimates with bias < 40% than IPTW or 
kernel weights, regardless of the estimand of interest (see Figure 3 for homogeneous effects). In 
turn, this allows VBKW and VM to produce less biased estimates of transitive treatment effects 
(i.e., calculating the ATT of B vs C among observations receiving treatment A from the ATTs of 
A vs B and A vs C among observations receiving treatment A). 
 
7. Discussion 
We investigated bias and efficiency of IPTW, KW, VM, and VBKW in analytic scenarios likely 
to be encountered in empirical analyses: misspecified estimated propensity score models, 
treatment effect heterogeneity, and sample distribution across treatment groups. The commonly 
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used IPTW strategy led to biased estimates more often than any other strategy we investigated.  
In nearly all scenarios, VBKW led to the least biased and most efficient estimates of the true 
treatment effect. These results suggest that VBKW may be less sensitive to propensity score 
model misspecification and sample distribution across treatment groups than other methods used 
to account for endogeneity in multi-valued treatment analyses. VBKW’s performance was only 
slightly better than that of VM, but it is simpler to implement. 
 
Estimates based on IPTW were especially sensitive to degree of propensity score model 
misspecification and skewed distribution of the sample across treatment groups. In addition, 
neither KW nor IPTW estimates appear well-suited to produce unbiased estimates of transitive 
ATTs. Transitive ATT estimates are less likely to be biased when weights are constructed among 
observations with similar vectors of propensity scores (VBKW, VM) than when they are 
constructed among observations within a range of common support defined by the maximum of 
minima and minimum of maxima of propensity scores (IPTW, KW) (Lopez and Gutman 2017).  
 
7.1 Limitations 
These results, while promising, need to be evaluated in light of several limitations. First, our 
simulations were based on an imposed DGP rather than an empirical one, potentially 
inaccurately reflecting scenarios likely to be encountered in applied analyses. In addition, we 
will verify our results with plasmode simulations based on DGPs present in empirical data 
(Franklin et al. 2014; see more details below). However, we obtained similar results when we 
used alternate coefficients in treatment models and alternate ways of generating treatment 
groups.  
 
In addition, we deliberately estimated a misspecified propensity score model with only main 
effects. A well-done propensity score analysis should ensure that the propensity score is leading 
to adequate covariate balance (Garrido et al. 2014), but we wanted to understand the degree to 
which results are robust to misspecification (and to potential lapses in analytic quality). This 
follows the pattern of previous propensity score simulation studies (e.g., Setoguchi et al. 2008). 
 
Relatedly, we do not test sensitivity of results to observed covariate choice or covariate 
measurement errors, nor do we test performance when propensity scores are combined with 
covariates in doubly-robust estimates. These important factors may affect estimates’ bias and 
efficiency in finite samples (Stuart et al. 2010; Kang and Schafer 2007; McCaffrey, Lockwood, 
& Setodji 2013; Pearl 2009; Shadish 2013; VanderWeele & Arah 2011) and should be addressed 
after we have a better understanding of the relative performance of weighting and matching 
strategies for a given set of confounders.   
 
7.2 Future directions 
Future work will allow us to verify our results in simulations based on DGPs present in empirical 
data (plasmode simulations). A plasmode is a dataset based on empirical data generating 
processes that “has been constructed so that at least some aspect of the ‘truth’ of the data 
generating process is known” (Vaughan et al. 2009). Plasmode simulations were developed for 
genome and microarray research and are now being applied to electronic health data (Franklin et 
al. 2014; Franklin et al. 2017). Traditional simulations are often criticized for their artificiality, 
and empirical data analyses are limited by analysts’ inability to observe the true treatment effect. 
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Plasmode simulations overcome these limitations by combining the benefits of a traditional 
simulation (known treatment effect that enables calculation of bias in treatment effect estimates) 
with the benefits of empirical data (empirical values of covariates and relationships among 
covariates are preserved). Plasmode simulations have the benefit of being derived from an 
empirical DGP while allowing us to observe a true treatment effect and thus the degree to which 
each weighting or matching strategy leads to biased treatment effect estimates.   
 
In future work, we will also determine the degree to which inferences diverge when we use 
nonparametric and semiparametric methods of estimating propensity scores. Values of 
propensity score weights vary with propensity score estimation method. As a result, treatment 
effect estimates obtained after propensity score weighting are sensitive to propensity score 
estimation method; this is well-documented in studies of binary treatments (Harder et al. 2010; 
Stuart 2010; Imai & Ratkovic 2014; Kang & Schafer 2007). Covariate balancing propensity 
scores (estimated with generalized method of moments) and propensity scores created through 
generalized boosting methods rely less on investigator trial and error than maximum likelihood 
estimation methods to create a propensity score that achieves covariate balance across treatment 
groups (Harder et al. 2010; Garrido et al. 2014; Dehejia & Wahba 1999).  
 
We may also be able to improve the performance of VBKW through adjustments to the 
bandwidth and by basing weights on the logit of the propensity score rather than on the 
propensity score itself (Stuart 2010). In addition, we will investigate the degree to which our 
patterns of results are robust to degree of pre-weighting imbalance across groups.  
 
In order to develop useful guidance for empirical analyses, where bias cannot be ascertained, 
future work will compute a measure of covariate balance across treatment groups in the 
simulated data (Harder et al. 2010). We will verify whether the patterns of relative performance 
across weighting or matching strategy we observed in these analyses are similar for covariate 
balance.  
 
Future work will also consider a measure of robustness to residual confounding. A limitation of 
propensity scores is that they only adjust for observed, not unobserved, confounding. To that 
end, we will identify how much unobserved confounding would need to be present for each 
strategy in each simulation scenario in order for the inference from the analysis to change. For 
each simulation scenario, we will rank the ATTs and ATEs produced by each strategy by degree 
of robustness to unobserved confounding. We will do this by following a weighted adaption of 
Rosenbaum’s sensitivity analysis methods. (Liu, Kuramoto, & Stuart 2013; Rosenbaum 2002). 
For each treatment effect estimate, we will identify the smallest amount of unobserved selection 
bias that would need to be present to change the inference from rejection to acceptance of the 
null hypothesis of no treatment effect. Strategies that require relationships between an 
unobserved confounder and the treatment and between an unobserved confounder and the 
outcome to be stronger before inferences change are considered more robust.  
 
8. Conclusion 
When propensity scores are used in analyses of binary treatments, vector matching and 
weighting are implicitly conducted. Matching on the probability of being treated leads to 
matching on the probability of not being treated. If a treatment has more than two values, vectors 
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need to be explicitly included in the creation of propensity score matches or weights. If they are 
not included, the propensity score for only one treatment group will be balanced, and estimates 
are likely to be biased and inefficient. VM and VBKW both lead to less biased and more 
efficient estimates than IPTW or KW that do not include vectors when there are more than two 
treatment groups. VBKW is relatively simple to implement and creates a single weighted 
subpopulation, facilitating comparisons of ATTs and ATEs among observations eligible to 
receive any of the treatments under consideration.  
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Table 1. Characteristics varied in Monte Carlo simulation and rationale for inclusion 

Characteristic: Rationale Possible Levels 

1) Nonlinearity/nonadditivity in covariates included in propensity score  
(Lee et al. 2010; Lee et al. 2011; Setoguchi et al. 2008):  
To enable comparisons with existing research, we use Setoguchi et al.’s 
seven scenarios for true propensity scores that include various levels of 
nonlinearity (polynomials of covariates) and nonadditivity (interaction terms 
between covariates) (Setoguchi et al. 2008). As the model increases in 
nonlinearity and nonadditivity, we expect more disparate inferences 
(Setoguchi et al. 2008).   

True propensity score is 
function of the 
following terms: 
a) X1,…X10 
b) X1,…X10, X2

2 
c) X1,…X10, X2

2
, X4

2, X7
2 

d) X1,…X10, X1X3, 
X2X4, X4X5, X5X6 
e) X1,…X10, X1X3, 
X2X4, X4X5, X5X6, X2

2 
f) X1,…X10, X1X3, 
X2X4, X4X5, X5X6, 
X5X7, X1X6, X2X3, X3X4 
g) X1,…X10, X1X3, 
X2X4, X4X5, X5X6, 
X5X7, X1X6, X2X3, 
X3X4, X2

2
, X4

2, X7
2 

2) Number of treatment groups: Evaluate performance in common 
numbers of treatment groups expected in empirical research (e.g., k=4: drug 
A + placebo, drug B + placebo, drugs A+B, placebo). We expect CBPS and 
kernel weights (less influence of extreme weights) to lead to the least biased 
estimates. We expect differences in inferences across strategies to be more 
likely as k increases (making covariate balance more difficult). 

k = 3, 4 

3) Distribution of sample across treatment groups (Rassen et al. 2013): 

Understand how well strategies approximate counterfactuals for treated 
individuals when there is relatively little information from comparison 
individuals. Unequal treatment group sizes often occur empirically. As 
group size decreases, weights will be constructed from fewer observations 
and will have greater variance. As the distribution becomes more skewed, 
we expect inferences from estimates based on non-stabilized IPTW (greater 
sensitivity to variance in weights) to diverge more than inferences from 
estimates based on other strategies. 

a) Equal split across 
groups 
b) One treated group = 
50% of observations, 
other groups split the 
remaining 50% equally 
c) One treated group = 
10% of observations, 
other groups split the 
remaining 90% equally 

4) Treatment effect heterogeneity: Understand how well strategies reduce 
bias in ATTs when ATTs are not expected to equal the ATE. We expect that 
differences in inferences that will arise with characteristics in rows 1-3 will 
be exacerbated in the presence of treatment effect heterogeneity (Rassen et 
al. 2013).3  

Coefficient on treatment 
variable in outcome 
equation is:  
a) Constant (c) 
b) c*X10 (associated 
with outcome) 
c) c*X2 (confounder) 

 

  

                                                           
3 Because one of the goals of this work is to develop practical guidance for applied investigators, we include a 
scenario that is likely to occur empirically, where heterogeneity is due to values of a confounder (4c in Table 1). 
There is no reason to expect any propensity score method would produce unbiased estimates of the ATE in this case, 
but we list it here for the sake of completeness. 
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Table 2. Summary of bias and efficiency of estimates across all analytic scenariosa 
Weighting or 

matching 

strategy 

Total number 

of analytic 

scenarios 

Number (%) 

of analytic 

scenarios 

with <40% 

bias 

Median 

bias as % 

of SD 

Median 

absolute 

bias 

Median 

IQR 

Median 

RMSE 

Median 

MAE 

IPTW 756 221 (29%) 69.626 0.051 0.095 0.095 0.062 
KW 756 356 (47%) 45.102 0.030 0.085 0.086 0.060 
VM 756 542 (72%) 26.362 0.018 0.103 0.085 0.056 
VBKW 756 554 (73%) 17.509 0.010 0.075 0.062 0.042 

IQR = Interquartile range, RMSE = root-mean-squared error, MAE = mean absolute error, IPTW  = inverse 
probability of treatment weights, KW = kernel weights, SD = standard deviation, VM = vector matching, VBKW = 
vector-based kernel weights 
a) One analytic scenario is one combination of the elements from Table 1 and one treatment effect estimate (e.g., 
one analytic scenario includes n=999, true propensity score includes mild nonlinearity, k = 3, evenly split sample 
distribution across treatment groups, a homogeneous treatment effect, and an estimate of the ATT of A vs B among 
observations receiving A) 
 

Table 3. Summary of bias and efficiency of estimates across analytic scenariosa that lead to <40% 

bias 
Weighting or 

matching strategy 

Number of analytic 

scenarios with <40% 

bias 

Median 

bias as 

% of SD 

Median 

absolute bias 

Median 

IQR 

Median 

RMSE 

Median 

MAE 

IPTW 221  19.935 0.014 0.083 0.066 0.042 
KW 356  11.934 0.008 0.104 0.080 0.053 
VM 542  17.186 0.012 0.103 0.080 0.053 
VBKW 554  10.702 0.006 0.075 0.058 0.038 

IQR = Interquartile range, RMSE = root-mean-squared error, MAE = mean absolute error, IPTW = inverse 
probability of treatment weights, KW = kernel weights, SD = standard deviation, VM = vector matching, VBKW = 
vector-based kernel weights 
a) One analytic scenario is one combination of the elements from Table 1 and one treatment effect estimate (e.g., 
one analytic scenario includes n=999, true propensity score includes mild nonlinearity, k = 3, evenly split sample 
distribution across treatment groups, a homogeneous treatment effect, and an estimate of the ATT of A vs B among 
observations receiving A) 
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Figure 1. IPTW estimates are more likely to be biased and inefficient in the presence of propensity 

score model misspecification (panels B-G) than estimates from KW, VM, or VBKW.  

 

 

 

IPTW = inverse probability of treatment weights, KW = kernel weights, VBKW = vector-based kernel weights, VM 
= vector matching.  
Density plot of residuals from ATE of treatment 1 vs 2 using IPTW, KW, VM, and VBKW with homogenous 
treatment effects, even distribution of sample across three treatment groups, and n=999. Estimated propensity score 
includes main effects only. True propensity score includes A) main effects only, B) mild nonlinearity, C) moderate 
nonlinearity, D) mild non-additivity, E) mild nonlinearity and mild non-additivity, F) moderate non-additivity, G) 
moderate nonlinearity and moderate non-additivity (Setoguchi et al. 2008) (see Table 1 for more details). 



19 
 

Figure 2. The median absolute bias of estimates produced by VBKW is less sensitive to propensity 

score misspecification (panels B-G) than in IPTW, KW, or VM.  

 

IPTW = inverse probability of treatment weights, KW = kernel weights, VBKW = vector-based kernel weights, VM 
= vector matching. 
Median absolute bias across all analytic scenarios, stratified by true propensity score (A-G). Estimated propensity 
score includes main effects only. True propensity score includes A) main effects only, B) mild nonlinearity, C) 
moderate nonlinearity, D) mild non-additivity, E) mild nonlinearity and mild non-additivity, F) moderate non-
additivity, G) moderate nonlinearity and moderate non-additivity (Setoguchi et al. 2008) (see Table 1 for more 
details). 
 

  



Figure 3. VBKW estimates were the least sensitive (smallest changes in percent bias, as well as the lowest overall percent bias) to variations in the 

distribution of the sample across treatment groups.  

 

IPTW = inverse probability of treatment weights, KW = kernel weights, VBKW = vector-based kernel weights, VM = vector matching. 
Median bias as a percent of standard deviation across scenarios with a homogenous treatment effect, stratified by estimand and sample distribution (A = equally distributed; B = 
one treated group has 50% of observations, other groups split the remaining 50% equally; C = one treated group has 10% of observations, other groups split the remaining 90% 
equally). Red lines indicate bias of 40% of the estimate’s standard deviation. 
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Appendix 1 

Setup and notation:  

In a standard cross-sectional setting, we observe a sample of individuals i = 1, 2, . . ., N from a 
population.  

Our sample size N is the sum of each the treatment group sizes: N = N1 + N2 + . . . + NZ.   

Each individual has been assigned one of z possible treatment levels, where z = 1, 2, . . . , Z. We 
observe the outcome variable yi, the observed treatment level ti, and a kx x 1 vector covariates, xi. 
We also define an indicator variable di(z) = 1(ti=z) which is equal to 1 if unit i received treatment 
z and equal to 0 otherwise. We distinguish between the observed outcome yi and the Z potential 
outcomes, yi(z). The observed outcome is given by  

yi = di(1)yi(1) + di(2)yi(2) + . . . + di(Z)yi(Z) 

Only one of the Z possible outcomes is observed for each individual in the sample. We observe a 
propensity score, defined as pi(t = z | xi) and a propensity score vector  

pi(z, xi) = {pi(t = 1 | xi),  pi(t = 2 | xi), … pi(t = Z | xi)}, for each unit i.  

 

Estimands:  

⩝ z ≠ z’, 

ATEz, z’ =      
∑ 𝑦𝑖𝑑𝑖(𝑧)𝑤𝑖,𝐴𝑇𝐸
𝑁
𝑖=1

∑ 𝑑𝑖(𝑧)𝑤𝑖,𝐴𝑇𝐸
𝑁
𝑖=1

− 
∑ 𝑦𝑖𝑑𝑖(𝑧′)𝑤𝑖,𝐴𝑇𝐸
𝑁
𝑖=1

∑ 𝑑𝑖(𝑧′)𝑤𝑖,𝐴𝑇𝐸
𝑁
𝑖=1

 

ATTz, z’ | z =   ∑ 𝑦𝑖𝑑𝑖(𝑧)𝑤𝑖,𝐴𝑇𝑇
𝑁
𝑖=1

∑ 𝑑𝑖(𝑧)𝑤𝑖,𝐴𝑇𝑇
𝑁
𝑖=1

− 
∑ 𝑦𝑖𝑑𝑖(𝑧′)𝑤𝑖,𝐴𝑇𝑇
𝑁
𝑖=1

∑ 𝑑𝑖(𝑧′)𝑤𝑖,𝐴𝑇𝑇
𝑁
𝑖=1

 

ATUz, z’ | z’ =  ∑ 𝑦𝑖𝑑𝑖(𝑧)𝑤𝑖,𝐴𝑇𝑈
𝑁
𝑖=1

∑ 𝑑𝑖(𝑧)𝑤𝑖,𝐴𝑇𝑈
𝑁
𝑖=1

− 
∑ 𝑦𝑖𝑑𝑖(𝑧′)𝑤𝑖,𝐴𝑇𝑈
𝑁
𝑖=1

∑ 𝑑𝑖(𝑧′)𝑤𝑖,𝐴𝑇𝑈
𝑁
𝑖=1

 

 

 

 



22 
 

Weights:  

Define j as an index of observations in treatment group z’, where j = {1, 2, . . ., Nz’}.  

Define l as an index of observations in treatment group z, where l = {1, 2, . . ., Nz}. 

 

Inverse Probability of Treatment Weights (IPTW):  

𝑤𝑖,𝐴𝑇𝐸 =

{
 

 

  

1

𝑝𝑖(𝑡 =  𝑧 |𝐱𝑖)
 ,             ⩝   𝑖 = 𝑙  

1

𝑝𝑖(𝑡 =  𝑧′|𝐱𝑖)
 ,              ⩝   𝑖 = 𝑗  

 

𝑤𝑖,𝐴𝑇𝑇 = {

1 ,                                       ⩝   𝑖 = 𝑙 
𝑝𝑖(𝑡 =  𝑧 |𝐱𝑖)

𝑝𝑖(𝑡 =  𝑧′ |𝐱𝑖)
 ,                ⩝   𝑖 = 𝑗 

 

𝑤𝑖,𝐴𝑇𝑈 = {

1 ,                                       ⩝   𝑖 = 𝑗 

𝑝𝑖(𝑡 =  𝑧
′|𝐱𝑖)

𝑝𝑖(𝑡 =  𝑧 |𝐱𝑖)
 ,         ⩝   𝑖 = 𝑙 

 

 

Kernel Weights (KW):  

𝑤𝑖,𝐴𝑇𝑇 = {
1,             ⩝   𝑖 = 𝑙 
𝑘𝑖(𝐷𝑙𝑧) ,         ⩝   𝑖 = 𝑗 

 

𝑘𝑖(𝐷𝑙𝑧) = {
3

4
(1 − (

𝐷𝑙𝑧
ℎ
)
2

),         𝑖𝑓 𝐷𝑙𝑧 < ℎ

0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Dlz = | pi(t = z |xi) – pl(t = z | xi) | 

𝑤𝑖,𝐴𝑇𝑈 = {
1,             ⩝   𝑖 = 𝑗 

𝑘𝑙(𝐷𝑗𝑧′), ⩝   𝑖 = 𝑙 
 

𝑘𝑙(𝐷𝑗𝑧′) = {

3

4
(1 − (

𝐷𝑗𝑧′

ℎ
)

2

) ,     𝑖𝑓 𝐷𝑗𝑧′ < ℎ

0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Djz’ = | pi(t = z’ | xi) – pj(t = z’ | xi) | 

wi, ATE = wi,ATT + wi, ATU  
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Vector-Based Kernel Weighting (VBKW):  

𝑤𝑖,𝐴𝑇𝑇 = {
1,                       ⩝   𝑖 = 𝑙 
𝑘𝑖(𝐷𝑙𝑧) ,                   ⩝   𝑖 = 𝑗

 

𝑘𝑖(𝐷𝑙𝑧) = {
3

4
(1 − (

𝐷𝑙𝑧
ℎ
)
2

), 𝑖𝑓 𝐷𝑙𝑧 < ℎ 𝑎𝑛𝑑 𝐷𝑙𝑚 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Dlz = | pi(t = z | xi) – pl(t = z | xi) | 

Dlm = | pi(t = m | xi) – pl(t = m | xi) |   ∀ m ≠ z 

 

𝑤𝑖,𝐴𝑇𝑈 = {
1,                      ⩝   𝑖 = 𝑗

𝑘𝑖(𝐷𝑗𝑧′) ,                ⩝   𝑖 = 𝑙
 

𝑘𝑖(𝐷𝑗𝑧′) = {

3

4
(1 − (

𝐷𝑗𝑧′

ℎ
)

2

) ,      𝑖𝑓 𝐷𝑗𝑧 < ℎ 𝑎𝑛𝑑 𝐷𝑗𝑛 < ℎ

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Djz’ = | pi(t = z’ | xi) – pj(t = z’ | xi) | 

Djn = | pi(t = n | xi) – pj(t = n | xi) |    ∀ n ≠ z’ 

wi, ATE = wi,ATT + wi, ATU  

 

Vector Matching (VM):  

𝑤𝑖,𝐴𝑇𝑇 = 𝑛𝑖,𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ,where ni, matched is the number of times subject i is part of a matched set of 
observations composed of at least one individual from each treatment group, when matching is 
implemented using reference group z.  

𝑤𝑖,𝐴𝑇𝑈 = 𝑛𝑖,𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ,where ni, matched is the number of times subject i is part of a matched set of 
observations composed of at least one individual from each treatment group when matching is 
implemented using reference group z’.  

wi, ATE = wi,ATT + wi, ATU  
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Appendix 2 

Density plots of residuals from ATE and ATT estimates using IPTW, KW, VM, and VBKW, 
even distribution of sample across three treatment groups, and n=999. Estimates for 
homogeneous treatment effects are presented. True propensity score includes A) main effects 
only, B) mild nonlinearity, C) moderate nonlinearity, D) mild non-additivity, E) mild 
nonlinearity and mild non-additivity, F) moderate non-additivity, G) moderate nonlinearity and 
moderate non-additivity (Setoguchi et al. 2008). IPTW = inverse probability of treatment 
weights, KM = kernel weights, VBKW = vector-based kernel weights, VM = vector matching. 
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