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Abstract

Physicians often choose among alternative treatment options based on their beliefs over the
treatment effectiveness and their skills in delivering the treatment. I examine how two kinds of
physician learning jointly shape their treatment choices: Bayesian learning that updates beliefs
about treatment-patient match values and learning by doing that improves surgical skills. Using
case-level data on the history of brain aneurysm treatments by over 200 physicians, I find that
both kinds of learning are present and that physicians are forward-looking. In light of these
empirical patterns, I develop and estimate a dynamic structural model of physician learning
and treatment choices for heterogeneous patients. I then quantify the impacts of the two kinds
of learning and find that (a) learning encourages physicians to deviate substantially from the
myopic best choices, hurting short-term patient outcomes but improving the overall treatment
success rates by 13-17%; (b) learning explains 20% of total variation in physicians’ choice of care,
with Bayesian learning helping to reduce the variation while learning by doing adding to the
variation. I also evaluate the impacts of several alternative payment schedules. Uniform pay-
ments across treatments facilitate the adoption of the new treatment while outcome-contingent
payments have heterogeneous effects across physicians. The heterogeneity highlights the coex-
istence of two opposing effects: the incentive to exploit themyopic best option and the incentive
to experiment with less familiar options due to the increased return from learning.
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1 Introduction

Physicians often need to choose among alternative treatment options and are constantly learn-

ing through experience which treatments are the best match for different types of patients. They

experiment with the options and update their beliefs based on patient outcomes, essentially doing

Bayesian learning.1 At the same time, physicians accumulate the skills to deliver each treatment

via learning by doing. The coexistence of Bayesian learning and learning by doing are especially

relevant for surgical care. Physicians’ beliefs about treatment-patient matches and surgical skills

affect the treatment choices and outcomes, which in turn change their future beliefs and skills.

In this paper, I study how these two kinds of learning shape physician decision-making, using

the treatment of brain aneurysms as an example. I focus on how belief updating via Bayesian

learning and skill accumulation via learning by doing jointly affect the treatment choices. I then

evaluate the impacts of payment reforms on physician learning and patient outcomes.

The treatment of brain aneurysms is a particularly desirable setting to study the two kinds of

physician learning. First, a brain aneurysm is a neurological condition with three treatment op-

tions: surgical clipping, the traditional option; endovascular coiling, a new option; no intervention,

the outside option. Clipping and coiling are both surgical procedures, hence physician beliefs

and skills are relevant to treatment choices. Second, the emergence of coiling as a promising yet

under-explored alternative gives physicians strong incentives to learn. Third, medical guidelines

for brain aneurysm treatment choices are still lacking, which further necessitates learning by in-

dividual physicians. Finally, the learning environment is fairly clean, with a limited number of

options, unilateral decision-making,2 and an immediately observable outcome measures, namely

whether the patient can be discharged home without the need for assisted care.3

My empirical analysis is based on the New York Statewide Inpatient Database (SID). The SID

covers the universe of inpatient care within the state and provides detailed case-level informa-

tion on diagnoses, treatments, and outcomes. Most importantly, it allows me to track physicians

across hospitals and years, thereby retrieving the uninterrupted history of brain aneurysm cases

by physician.

1See, for example, Coscelli and Shum (2004) and Crawford and Shum (2005) on physician learning about anti-ulcer
drug choices; Dickstein (2014) on anti-depressant drugs; and Saxell (2014) on cholesterol drugs.

2The treatment of brain aneurysms features strong information asymmetries between physicians and patients and
barely any shared decision-making. See The Dartmouth Atlas Working Group (2015) for a detailed discussion.

3This binary outcome measure is widely used in the medical literature and has been shown to be a good proxy for
patients’ longer term health outcomes (Zacharia et al., 2014).
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I start with reduced-form evidence of whether and how physicians learn. First, I show that

a physician is more likely to choose a treatment if she has used it on more patients or has had

better patient outcomes with it on similar patients. The path dependence suggests the presence of

skill accumulation and patient type-specific belief updating, respectively. Using the subsample of

emergency cases, I show that the dependence is not driven by the sorting of patients. I also rule

out learning from peers by showing that a physician’s utilization rate of a treatment is not affected

by that of her colleagues, once conditional on her own history. Second, I find that the average

patient outcome improves over time, but such improvement is mainly driven by better treatment-

patientmatches instead of skill accumulation. The outcomes of similar patients no longer vary over

time, once conditional on receiving the same treatment. That is, while both learning by doing and

learning about treatment-patient match values affect physician choices, they have different effects

on patient outcomes. Third, I document suggestive evidence that physicians are forward-looking.4

Physicians with high future patient arrival rates are more likely to adopt coiling, the new option,

in the earlier periods. The response to future patient arrivals suggests physicians are likely to be

forward-looking, because a myopic physician would not account for the return of learning, which

partially depends on the frequency of patient arrivals.

The reduced-form results motivate a model with forward-looking physicians who mainly learn

from their own experiences, accumulating skills andupdating beliefs about treatment-patientmatches.

The choice dynamics and the intertemporal tradeoff in learning also necessitate a structural model

that can disentangle the two kinds of learning and evaluate alternative policies that change physi-

cian learning incentives.

I develop a dynamic model of physician treatment choices under two distinct kinds of learning.

Each physician holds (a) a set of beliefs about the latent and invariant match value between each

pair of treatment and patient type and (b) a set of evolving, treatment-specific surgical skills. The

forward-looking physician thenmakes treatment choices for a sequence of heterogeneous patients,

maximizing the discounted sumof her expected payoffs. The physician’s flowpayoff consists of the

expected patient outcome, which depends on her beliefs regarding treatment-patientmatch values;

the cost of delivering a treatment, which decreases as she accumulates more surgical skills in that

treatment; and the expected treatment revenue, which reflects her financial incentives. Finally, the

physician’s beliefs and skills evolve after treating each patient. The physician starts with hetero-

4The tests follow Abaluck et al. (2015), who identifies the extent to which Medicare Part D enrollees are forward-
looking from their response to future prices.
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geneous prior beliefs about the match value between each pair of treatment and patient type. She

updates her belief in a Bayesian fashion after observing the outcome of the particular treatment-

type combination. At the same time, her surgical skill in that treatment grows deterministically

regardless of the patient type or the outcome.

The model features a high-dimensional state space and spillovers between the two kinds of

learning; that is, an increase in the skill of one treatment affects the physician’s future evaluation of

that treatment for all types of patients. To address these challenges, I solve themodel bymodifying

the Gittins index, which uses forward induction to circumvent the curse of dimensionality (Gittins,

1979). The modified Gittins index accommodates the spillover of learning by doing across patient

types, provides a sufficient statistic for the value of each option, and only depends on the current

state.5 I followWhittle (1982) and prove that always choosing the option with the highest index is

an optimal policy.

I estimate themodel on the SIDdata usingmaximum likelihood. The learning parameters imply

that physician beliefs converge after Bayesian learning from 10-20 cases, and that the accumulation

of skills has large impacts on treatment choices: a physician will be indifferent between an option

she has used twice and another option she believes to have a 6.5-percentage-point lower success rate

but has used 7 times, the average annual caseload in the sample. Using simulation, I disentangle

the impacts of the two kinds of learning. The effect of Bayesian learning dominates that of learning

by doing on the utilization of clipping, explaining 78% of the changes in clipping probability when

both kinds of learning are shut down. This reflects the high initial stock of skills in clipping, which

limits further learning by doing. On the contrary, the effect of Bayesian learning is dominated by

that of learning by doing on the adoption of coiling, explaining only 26% of the changes.

With counterfactual experiments, I first quantify the effects of learning in two ways. I begin

by exploring how physicians would choose differently if they were myopic and had disregarded

the value of learning. I find that the adoption rate of coiling would decrease from 41% to 31% if

physicians were myopic. In particular, forward-looking physicians are more than twice as likely

to deviate from the myopic best choices and experiment with coiling on unhealthy patients than

healthier ones.6 I also find that the experimentation hurts short-term outcomes, but the overall

treatment success rates are 13-17% higher than they would be with myopic physicians. I then

5As pointed out by Dickstein (2014), the Gittins index also provides an intuitive rule of thumb for physician decision-
making, which may be more relevant in practice.

6This echoes the intuition of the “stepping stone” model by Jovanovic and Nyarko (1997), in which agents first ex-
periment with options that suffer from smaller losses in case of a failure.
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gauge the contribution of learning to the variation in physicians’ choice of care. I find that shut-

ting down both channels of learning would reduce total variation by 20%. 7 In addition, the two

kinds of learning work differently: Bayesian learning helps to reduce the variation through belief

convergence; learning by doing adds to the variation by solidifying the randomness in physicians’

past outcomes, thereby driving physicians down diverging paths even if they were similar ex ante.

In another set of counterfactuals, I evaluate the impacts of two payment reforms. I find that

uniform payments across treatments facilitate the adoption of coiling for almost all physicians, as

current choices are partly influenced by the lower payment for coiling. I also examine outcome-

contingent payments such as the on-going Value Modifier (VM) program by the Centers for Medi-

care and Medicaid Services. VM pays physicians 102% of the base amount for good patient out-

comes and 98% for bad ones. I find that the responses to VM are heterogeneous across physicians,

highlighting the classic exploitation versus experimentation tradeoff in learning. The increased re-

ward from a success induces physicians to exploit the myopic best option while the greater return

of learning encourages experimentation with less familiar options.

My study contributes to three strands of literature. First, I build on the literature of physi-

cian learning by explicitly incorporating physician skill accumulation into a Bayesian learning

model. Previous studies have primarily focused on Bayesian learning about prescription drugs

(e.g., Coscelli and Shum (2004); Crawford and Shum (2005); Ferreyra and Kosenok (2011)).8 Dick-

stein (2014) examines physicianBayesian learning in amulti-armedbandit frameworkwith forward-

looking physicians and correlated learning across similar drugs. My study is the first to model

physician skill accumulation in tandem with belief updating. The inclusion of the learning-by-

doing channel is especially relevant in the context of surgical conditions such as brain aneurysms.

I complement previous studies by allowing for endogenous beliefs and skills, which jointly shape

physicians’ treatment choices and evolve depending on those choices. Moreover, I am able to esti-

mate an otherwise high-dimensionalmodel with themodifiedGittins index, which accommodates

forward-looking physicians and spillovers across the two kinds of learning.

Second, my work complements an earlier literature on worker learning in the labor market. Jo-

vanovic (1979) proposes a model in which the worker learns about his productivity on each job.

7Previous studies (e.g. Finkelstein et al. (2016)) find that the supply side (healthcare providers) accounts for about
60% of total variation. Hence learning alone contributes a significant fraction of the supply-side variation.

8Also see Ching et al. (2013) for an excellent survey of studies on consumer learning in experience good markets.
Other studies extend the focus beyond physicians’ learning from their own experiences and examine learning from
watching peers (Ho, 2002), detailing (Narayanan and Manchanda, 2009), patients’ prescription history (Saxell, 2014),
and public disclosure of physician performances (Kolstad, 2013).
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Jovanovic and Nyarko (1997) focus on worker mobility and compare the stepping-stone model, in

which worker productivities evolve on the job, with the bandit model à la Miller (1984), in which

workers learn about their latent match values with each job. Recent work by Papageorgiou (2014)

studies workers who learn about their comparative advantages in different occupations. My pa-

per focuses on a combination set of learning objectives that are more relevant in the context of

medical decision-making: physicians try to recover the latentmatch value between treatments and

patients via Bayesian learningwhile simultaneously accumulating surgical skills in each treatment

via learning by doing.

Finally, I contribute new empirical evidence to the large literature on physician practice styles

and variations in the choice of care.9 On the demand side, studies find that patient preferences are

relatively unimportant (Cutler et al., 2013; Baker et al., 2014; Finkelstein et al., 2016). On the supply

side, researchers have looked into how physician behaviors are impacted by factors such as finan-

cial incentives (Gruber et al., 1999; Johnson and Rehavi, 2016), litigation risks (Baicker et al., 2007),

team composition (Chan, 2016), and practice environments (Molitor, 2018). Even for completely

benevolent physicians, specialization can also affect treatment decisions by changing the return of

different treatment options (Chandra and Staiger, 2007). Other studies point to more tacit charac-

teristics of physicians. The heterogeneity in physician beliefs (Cutler et al., 2013), aggressiveness

(Abaluck et al., 2016), procedural skills and the responsiveness to patient conditions (Currie et al.,

2016; Currie andMacLeod, 2017) all have significant impacts on the choice of care and patient out-

comes. I add to this literature by documenting the within-physician choice dynamics with a novel

dataset that includes physician histories and observable outcomes, which are rarely available in

previous studies.

The paper proceeds as follows. In Section 2, I introduce the background on brain aneurysm

treatments, describe the SID data, and document reduced-form evidence on physician learning. I

then develop a dynamic model of physician learning and treatment choices in Section 3. I specify

the econometricmodel anddiscuss the identification strategy in Section 4. In Section 5, I present the

estimation results and disentangle the impacts of the two kinds of learning. With counterfactual

experiments in Section 6, I show how physician myopia and payment reforms would influence

treatment choices and outcomes. I conclude in Section 7.
9See Skinner (2011) and Chandra et al. (2011) for comprehensive surveys of related studies in both the economic and

the clinical literature.
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2 Empirical Backgrounds and Data

2.1 Brain aneurysms and treatment options

Brain aneurysms (also known as cerebral aneurysms or intracranial aneurysms) are blisters formed

on weakened spots of brain arteries. Vlak et al. (2011) estimated that about 3.2 percent of the

population have brain aneurysms. The average age of brain aneurysm patients is 50, with a large

variance. Despite their prevalence, the detection of brain aneurysms is not as common because

the majority of aneurysms are asymptomatic. Diagnoses have only increased starting in the early

2000s with the advances of imaging technologies (Wiebers et al., 2003).

Althoughmostly asymptomatic, brain aneurysms can be life-threatening if they rupture, which

happenswith an average probability of 1%per year (Wiebers et al., 2003). Ruptured aneurysmswill

cause bleeding inside the brain (subarachnoid hemorrhage, SAH). 10-15% of SAH sufferers die before

reaching the hospital. Even for those who manage to reach the hospital and receive emergency

care, the mortality rates are still as high as 25%.

There are three options for managing brain aneurysms. The first option, surgical clipping, is

the traditional treatment for brain aneurysms since the 1920s. The neurosurgeon cuts an open-

ing in the skull and places a clip across the neck of the aneurysm to stop the blood flow into the

aneurysm.10 This treatment is both durable and effective in preventing ruptures, yet is invasive

and poses relatively high mortality and morbidity risks. The second option, endovascular coiling,

is a more recent procedure approved by the Food andDrugAdministration (FDA) in 1997. Its take-

up rates were below 10 percent until a 2003 study in The Lancet showing its comparable outcomes

to clipping (Wiebers et al., 2003). But the medical community is still uncertain about how well it

suits different types of patients. The third, outside option is watchful observation and no interven-

tion. In this case, the neurosurgeon orders follow-up diagnostic imaging tests every 6-12 months

to monitor the development of the aneurysm.

A commonly usedmeasure of treatment success is whether the patient can be discharged home

and does not need assisted care (Zacharia et al., 2014). This binary indicator is shown to be a

good predictor of the patient’s long-term health and wellbeing. Moreover, it is clearly defined

and observable to the attending physician. Hence the physician can easily get feedback on her

treatment, thereby learning from it. It is also readily available in hospital records, so I am able to

observe the treatment outcomes in the inpatient care data that I use.

10Figure A1 in the Appendix illustrates the procedure.
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Table 1 summarizes the key differences among the three treatment options using data from

New York State from 2003-2014. Both options of intervention are costly and require several days

of inpatient stay. The median total charge of clipping is 36%more expensive than coiling, partially

driven by the extra cost incurred during the significantly longer stay. The bottom half of the table

shows the different match values between treatments and patient types. The probability of having

treatment success rates is higher for patients with unruptured aneurysms, as well as patients with

no major comorbidities.

Surgical Endovascular Watchful
clipping coiling observation

Since 1920s 1997 -
Invasiveness Invasive Minimally -

craniotomy invasive
Median charges ($1,000) 123.72 90.34 7.55
Median inpatient days 12 4 2
Treatment success rates by patient type:
Ruptured, no major comorbidity 27.1% 40.0% 37.7%
Ruptured, with major comorbidity 29.0% 35.1% 16.6%
Unruptured, no major comorbidity 73.4% 93.1% 90.7%
Unruptured, with major comorbidity 59.1% 84.3% 84.9%

Table 1: Treatment options for brain aneurysms
Notes: Charges are in real 2014 thousands of dollars and include all charges for the inpatient stay. A treatment is a
success if the patient can be discharged home and does not need assisted care. Ruptured and unruptured aneurysms
are identified from standardized diagnosis codes (ICD-9-CM) in the SID data. Healthy patients are those with no major
comorbidities (diseases or disorders in addition to the primary condition, i.e. brain aneurysm) as recorded in the SID.

2.2 The New York Statewide Inpatient Database (2003-2014)

I use the State Inpatient Database (SID) for New York from 2003 to 2014 for my empirical anal-

yses. The SID includes the universe of inpatient discharges at almost all of the over 200 hospitals

in New York State. More importantly, each physician has a unique ID that stays unchanged across

hospitals and time. Hence I am able to identify all the brain aneurysm cases treated by a given

physician over the sample period, as long as the procedures are done within the state borders.11

This is crucial for retrieving the entire history of a physician’s treatment choices and patient out-

comes over time.

Each observation in SID is an inpatient discharge and has a rich set of information on the timing,

11Due to licensing requirements, practicing neurosurgery in multiple states is not common. Thus I will assume the
neurosurgeons’ brain aneurysm cases in the State of New York capture all of their inpatient brain aneurysm cases.
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source, and source of the admission; demographic and medical information of the patient; up to

15 standardized codes on diagnoses and treatments; the cost, length, and, most importantly, the

outcome of the inpatient stay.

I construct the main sample in two steps. First, I impose the following selection criteria on

the SID: I exclude maternal or neonatal admissions (20.09%) to focus inpatient admissions with

disease-related medical needs. I also exclude admissions that are transferred from law enforce-

ment (0.08%), those with missing physician identifiers (0.47%), or those with the patient’s age

under 15 (15.31%). Admissions that belong to one of the above cases account for 25.78% of the

whole SID panel and are dropped in this step. The remaining sample has 22.40 million inpatient

cases. Second, I identify and focus on the subsample of admissions due to brain aneurysms us-

ing the standardized ICD-9-CM diagnosis codes following Brinjikji et al. (2011). I further identify

and exclude emergency cases with only first-aid procedures and resulted in patient deaths, which

indicate limited room for medical decision-making.

The resultingmain sample includes 11,767 brain aneurysmcases (10,629 uniquepatients) treated

by 219 physicians at 111 hospitals. Note that the vast majority of patient-physician encounters are

only one-shot. About 50% of the cases are emergency ones where patients can barely search for or

be referred to certain physicians. This subsample will help me address the potential endogeneity

issues in Section 2.3. Table 2 summarizes the workload, choice patterns, and professional affilia-

tions of the physicians in the sample.

2.3 Reduced-form evidence

I draw upon the SID data for empirical patterns of treatment choices. I explore (a) whether

Bayesian learning and learning by doing are present, (b) how the two kinds of learning affect pa-

tient outcomes differently if they are present, and (c) towhat extent physicians are forward-looking.

Presence of both kinds of learning. My first set of reduced-form results provide evidence that

both kinds of learning are present and affect physicians’ treatment choices. Figure 1 illustrates the

convergence in physician choices over time. Panel A plots the cumulative shares of patients treated

by clipping (left) and coiling (right) by physicians who have high clipping adoption rates when

they are last observed in the SID data (i.e. in 2014 or when they leave the sample, whichever comes

earlier). The share of cases treated by these physicians with clipping is dispersed in the earlier

months, but converges to a relatively high level over time. The share of cases treated with coiling
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Mean S.D. Min Max
A. Physician workload

Annual caseload 7.48 9.16 1 67
Annual number of patients 6.98 8.42 1 67
Annual number of cases treated with clipping 2.25 4.27 0 37
Annual number of cases treated with coiling 3.07 5.92 0 48

B. Physician choice patterns
Share of cases treated with clipping 0.30 0.46 0 1
Share of cases treated with coiling 0.42 0.49 0 1
Share of cases treated with observation 0.29 0.45 0 1
Share of cases treated with clipping, conditional on intervention 0.42 0.49 0 1
Share of cases treated with coiling, conditional on intervention 0.58 0.49 0 1

C. Physician experience and professional affiliations
Fraction of young physicians 0.35 0.48
Fraction of teaching-hospital physicians 0.33 0.47
Number of hospitals worked at 1.46 0.96 1 8
Number of physicians at the same hospital in a month 1.86 1.16 1 9
Number of physicians at the same hospital in a year 3.25 2.55 1 13

Table 2: Physician workload, choice patterns, and professional affiliations in the main sample
Notes: The main sample is constructed from the New York SID (2003-2014) and includes 11,767 inpatient cases for
which aneurysms are the primary cause of admission. Caseload refers to the number of inpatient cases treated by a
neurosurgeon in a year. Young physicians are those with no more than 5 years of experience in the data. Teaching-
hospital physicians are those working primarily (measured by caseload) at a teaching hospital. If a physician works
at multiple hospitals, the one with the largest share of the physician’s cases is used.Number of hospitals worked at is the
number of hospitals a neurosurgeon every practiced in. Number of physicians at the same hospital in a month (year) is the
number of other neurosurgeons who treat brain aneurysms at the same hospital as a physician in a calendar month
(year).
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is also dispersed at the beginning, but converges to 0-20%. Panel B shows similar patterns among

physicians who end up with high coiling adoption rates.

I then show that physician choices respond to past experiences and outcomes with the treat-

ments. Table 3 reports the estimates from multinomial logit regressions of the case-level choice

probabilities. I regress physician i’s choices for the patient in period t on the physician’s past ex-

periences with each treatment and the resulting patient outcomes. Columns (1) and (2) show that

physicians are more likely to choose a treatment if they have used it more on previous patients;

they also tend to favor the treatment with which they have had better outcomes on similar patients.

The path dependence suggests that both skill accumulation (learning by doing) and patient type-

specific belief updating (Bayesian learning) are present. InColumns (3) and (4), I use the subsample

of emergency cases where there is limited room for selection or sorting based on patient character-

istics. The choice patterns are highly similar to those using the whole sample, thereby ruling out

the endogeneity problem.

Dependent variable: case-level treatment choice d ∈ {Clip,Coil,Obs}
Whole sample Emergency cases

Pr(clipping) Pr(coiling) Pr(clipping) Pr(coiling)
(1) (2) (3) (4)

ln(previous clipping cases) 0.068*** -0.044*** 0.077*** -0.050***
[0.004] [0.004] [0.006] [0.006]

ln(previous coiling cases) -0.046*** 0.048*** -0.043*** 0.071***
[0.005] [0.005] [0.007] [0.006]

ln(previous clipping successes*) 0.147*** -0.057*** 0.137*** -0.023**
[0.006] [0.007] [0.009] [0.009]

ln(previous coiling successes*) -0.077*** 0.162*** -0.048*** 0.128***
[0.006] [0.005] [0.011] [0.009]

Observations 11,746 6,296

Table 3: Reduced-form evidence: treatment choices respond to past experiences and outcomes
Notes: The table reports the marginal effects on choice probability from a multinomial logit regression, where the
dependent variable is physician i’s choice (clipping, coiling, or observation) for the patient in period t. ln(previous cases
of clipping) is the log number of cases physician i has treated with clipping up to but not including t. ln(previous clipping
success*) is the cumulative number of physician i’s cases treated with clipping where (i) patients are of the same type as
the current patient and (ii) the outcomewas a success. A treatment is a success if the patient can be discharged home and
does not need assisted care. Columns (1)-(2) use the entire sample; (3)-(4) use the subsample of emergency cases to rule
out the alternative explanation that the path dependence shown in (1)-(2) is driven by the sorting of patients over time.
Other covariates include patient demographics, insurance status, comorbidities, aneurysm types, sources of admission,
hospital fixed-effects, and year fixed-effects. Standard errors are reported in brackets.** p < 0.05, *** p < 0.01

I further rule out a physician’s peers as the major source of learning. Previous studies have

found the impact of team learning or learning by watching on physician choices (Ho, 2002; Rea-

gans et al., 2005). But in the SID sample, I observe only one physician treating brain aneurysms
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Panel A. Convergence of choices by high-clipping physicians
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Panel B. Convergence of choices by high-coiling physicians
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Figure 1: Convergence of choices over time
Notes: Panel A plots the cumulative shares of patients treated by clipping (left) and coiling (right) by physicians who
have high clipping adoption rates when they are last observed in the SID data (i.e. in 2014 or when they leave the
sample, whichever comes earlier). The share of cases treated by these physicians with clipping is dispersed in the earlier
months, but converges to a relatively high level over time. The share of cases treated with coiling is also dispersed at
the beginning, but converges to 0-20%. Panel B plots the same convergence patterns in the shares of coiling (left) and
clipping (right) by physicians who end up with high coiling adoption rates.
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at each hospital more than 50% of the time. In addition, I show in Table 4 that a physician’s uti-

lization of clipping and coiling respond to her own but not her peers’ choices. Columns (1)-(2) use

the subsample of physicians who have at least one colleague at the same hospital within a calen-

dar year. I find that while the physician’s utilization is strongly affected by her past choices and

outcomes, it is not correlated with her peers’ choices. The physician’s utilization rate of coiling is

even negatively correlated with her peers’, although the magnitudes are tiny compared with other

factors. Columns (3)-(4) use the smaller subsample of physicians who have colleagues at the same

hospital within a calendar month, and find similar results.

Dependent variable: physician i’s utilization rate of clipping or coiling
Clip% Coil% Clip% Coil%
(1) (2) (3) (4)

Own share of clipping -0.5722*** -0.5869***
[0.0116] [0.0130]

Own share of coiling -0.3963*** -0.3920***
[0.0081] [0.0087]

Own success rate with clipping 0.0950*** 0.1606*** 0.0967*** 0.1808***
[0.0058] [0.0069] [0.0064] [0.0077]

Own success rate with coiling -0.0411*** 0.2944*** -0.0400*** 0.3037***
[0.0064] [0.0070] [0.0071] [0.0079]

Peers’ share of clipping -0.0011 0.0042*** -0.0012 0.0047***
[0.0009] [0.0011] [0.0012] [0.0014]

Peers’ share of coiling -0.0012 -0.0069*** -0.0009 -0.0071***
[0.0009] [0.0011] [0.0010] [0.0013]

Adjusted R2 0.5387 0.6301 0.5116 0.6197
Observations 8,402 8,402 6,870 6,870

Table 4: Reduced-form evidence: physicians are not following peers’ choices
Notes: The table reports estimates from linear regressions with the dependent variable being a physician’s cumulative
shares of clipping ((1) and (3)) and coiling ((2) and (4)). Columns (1)-(2) use the subsample of physicians who have at
least one colleague at the same hospital within a calendar year. Columns (3)-(4) uses the subsample of physicians who
have at least one colleague at the same hospital within a calendar month. A treatment is a success if the patient can
be discharged home and does not need assisted care. Other covariates include year and hospital fixed effects. Standard
errors are reported in brackets. *** p < 0.01

Different outcome implications between Bayesian learning and learning by doing. My second

set of reduced-form results look into the change in patient outcomes over time. Although previous

results show that both beliefs and skills influence physician choices, I find that they have different

implications for patient outcomes. Column (1) of Table 5 shows that the outcomes of a physician’s

patients do improve over time. But the improvement is likely the result ofmore accurate beliefs and

better matching between treatments and patients, not skill accumulation: column (2) shows that
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once conditional on receiving the same treatment, the patient outcomes no longer vary discernibly

over time. This will motivate my specification of the structural model, in which physician beliefs

affect the expected outcome, but skills only help to reduce the physician’s cost of delivering care.12

Dependent variable: 1(treatment success)
(1) (2)

ln(cumulative number of patients) 0.105** -0.0257
[0.050] [0.0316]

Physician fixed effects Y Y
Patient type dummies Y Y
Treatment dummies N Y
Observations 8,709

Table 5: Reduced-form evidence: evolution of patient outcomes
Notes: The table summarizes the results from a panel regression with physician fixed effects, where the dependent
variable is whether the treatment is a success. A treatment is a success if the patient can be discharged home and does
not need assisted care.ln(previous cases of clipping) is the log number of cases physician i has treated with clipping up
to but not including t. ln(cumulative number of patients) is the total number of patients the physician has treated up to
but not including the current patient. Other covariates include patient demographics, insurance status, comorbidities,
aneurysm types, and sources of admission. Column (1) also controls for patient types. Column (2) controls for both
patient types and the chosen treatment. Standard errors are reported in brackets.** p < 0.05

Forward-looking physicians. In the last set of reduced-form analyses, I test whether physicians’

initial choices also respond to patient arrival rates in the future. The evidence will shed light on the

extent to which physicians are forward-looking: the return from learning is higher if a physician

expects to have frequent arrivals of brain aneurysm patients, or if the current patient is of a com-

mon type. Hence a forward-looking physician will be more likely to experiment with the lesser

known treatment option in these scenarios, whereas a myopic physician will be indifferent. Table

6 indeed shows that physicians with more experience in the past are more likely to choose clipping

than coiling in the early periods, which reflects some degree of path dependence. But experienced

physicians who have higher future patient arrival rates are more likely to choose coiling over clip-

ping than their experienced peers with low arrival rates. Table 7 also finds that a given physician

is more likely to choose coiling on a patient if she expects more patients with the same type in the

future.

The reduced-form results provide strong evidence of learning by physicians who are forward-

looking, accumulate skills, andupdate beliefs from their own experience. The rich choice dynamics

also call for a structural model to disentangle the two kinds of learning and to do counterfactual

12Stone and Bernstein (2007) studied 2684 errors in 1108 neurosurgical cases, and found that only 2.7% of all errors
have significant impacts on patient outcome.
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Dependent variable: case-level treatment choice d ∈ {Clip,Coil,Obs}
Pr(clipping) Pr(coiling)

1(experienced physician) 0.143*** -0.141***
[0.0303] [0.0357]

1(Low arrival rates)×1(experienced physician) 0.153*** -0.142***
[0.0205] [0.0342]

1(High arrival rates)×1(experienced physician) -0.144*** 0.139***
[0.0298] [0.0348]

Observations 6,276

Table 6: Reduced-form evidence: initial treatment choices respond to future patient arrival rates
Notes: The table reports the marginal effects on choice probability from a multinomial logit regression, where the
dependent variable is physician i’s choice (clipping, coiling, or observation) for the patient in period t. The sample is
restricted to the first 15 cases of each physician in order to show how initial choices respond to future patient arrivals.
Experienced physicians are those with at least 6 years of experience. 1(Low arrival rates) indicates the physician’s future
monthly patient arrival rate is below 30%. 1(High arrival rates) indicates the physician’s future monthly patient arrival
rate is above 70%. Other covariates include arrival rate dummies, patient characteristics, teaching hospital dummy, and
year fixed-effects. Standard errors are reported in brackets.*** p < 0.01

Dependent variable: case-level choices and outcomes
(1) (2) (3)

Pr(clipping) Pr(coiling) Pr(success)
Type arrival rate 0.0979*** 0.210*** -0.195***
(%) [0.0306] [0.0314] [0.0273]
Physician fixed-effects Y Y Y
Observations 4,766 4,766 4,766

Table 7: Reduced-form evidence: initial treatment choices respond to future type-specific patient
arrival rates
Notes: The table reports estimates from panel regressions with physician fixed effects, where the dependent variables
are (1) the probability of choosing clipping; (2) the probability of choosing coiling (column 2); (3) the probability of
treatment success. A treatment is a success if the patient can be discharged home and does not need assisted care. The
sample is restricted to the first 15 cases of each physician in order to show how initial choices respond to future patient
arrivals. Type arrival rate is the probability of having a patient with the same type as the current patient in any given
month in the future. Other covariates include patient characteristics and initial market shares of treatment options in
the quarter of the physician’s entry. Standard errors are reported in brackets.*** p < 0.01
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experiments. In the next section, I develop such a model in light of the empirical patterns to study

how Bayesian learning and learning by doing jointly shape physicians’ treatment choices.

3 A Dynamic Model of Physician Learning

I first develop a dynamic model featuring forward-looking physicians who make treatment

choices for patients with different observable types. I then show how physician beliefs and skills

evolve in two separate learning processes. The model highlights the tradeoff between exploiting

high flow payoffs and exploring lesser-known options for information and skills that may gener-

ate high continuation values. I solve the model by modifying the standard Gittins index (Gittins,

1979; Whittle, 1982) to circumvent the curse of dimensionality and to accommodate the spillover

of learning by doing across patient types. I conclude the section by characterizing the modified

Gittins index following the numerical approximation by Brezzi and Lai (2002).

3.1 Model setup

The decision maker and time. Consider the decision-making process of physician i treating pa-

tients with a given condition over an infinite planning horizon, t = 0, 1, 2, .... Each time period is a

month. Physicians share a common discount factor, β̃ ∈ (0, 1).

Patients. At most one patient arrives in each period, with probability λi0 no patient arrives.

Hence I index the patient arriving in period t by t for notational simplicity. Each patient has an

observable type, kt ∈ K, whereK = {1, . . . ,K} is a finite set.13 The distribution of kt is i.i.d. across

time and known to the physician. Let λik be the probability that patient t is of type k conditional

on arrival, subject to the constraint
∑

k∈K λik = 1.

Treatment options. The physician is to choose a treatment for each patient t. Denote the set of

available treatments by D, which comprises three options: watchful observation (d = 0), surgical

clipping (d = 1), and endovascular coiling (d = 2). Let θdk be the match value between option d

for type-k patients, which governs the distribution of patient outcome y, F (y; θdk). The true match

values are time-invariant but unknown to the physician and will be learned over the course of a

physician’s practice.

13For convenience, I denote the case of no patient arrival by having a patient of type 0.
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Physician beliefs, skills, and flow payoffs. 14 At the beginning of period t, the physician holds a

complete set of beliefs and skills, ({θdt }d∈D, {edt }d∈D). θdt = (θd1t , . . . , θ
dK
t )′ is aK×1 vector of beliefs

about the match value of treatment d for each type of patient. edt is the physician’s cumulative

experience in d up to, but not including, period t. Note that the beliefs, θdt , are type-specific but

physician experience edt is not—treating any type of patientwith d improves the physician’s surgical

skills for d.

The physician’s choice-specific flow utility is

udt (θ
d
t , e

d
t , kt, r

dk
t ) =


E[ydkt | θdkt , kt] + αrdkt − c(edt ), if kt ≥ 1

0, if kt = 0

(1)

I normalize the payoff to 0 when there is no patient. When there is a patient of type kt = k,

the payoff has three components. First, the physician cares about the patient’s expected outcome,

E[ydt | θdkt , kt = k]. She forms the expectation using her belief θdkt at the beginning of period t.

Second, the physician takes into account the revenue she generates, rdkt . Because the physician

does not know the exact amount at the time of decision-making, she uses the hospital average for

type-k patients treated with d in the same year as t. The physician observes rdkt at the beginning of

each period and holds naive expectations that future revenues remain unchanged. The expected

revenues are weighted by α in the physician’s utility. Third, the physician subtracts from her flow

payoff the (physical or psychological) cost to deliver treatment d, c(edt ). The cost shrinks as the

physician accumulates more skill, edt .

Discussion: effects of Bayesian learning vs. learning by doing. The physician improves her

treatment-specific surgical skills, edt , and beliefs about the treatment-patient match value, θdkt . The

two kinds of learning have different effects on future physician payoff inmymodel: belief updating

changes the physician’s expectation of outcome for a treatment-patient pair; skill accumulation

lowers treatment costs for the physician. I choose this modeling approach in light of the empirical

patterns discussed in Section 2.3. An alternative modeling approach is to let both the belief and

the surgical skill affect the patient outcome, ydk. In that case, the physician’s belief updating will

depend on the realized outcome and her skill level when furnishing the treatment.

14I suppress the i subscript from now on.
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3.2 The learning processes

3.2.1 Learning by doing and skill accumulation

For clipping (d = 1) and coiling (d = 2), the physician’s treatment-specific skills accrue as she

treats more patients:

edt+1 = edt + 1{dt = d} (2)

The evolution of skills is independent of patient type and treatment outcome. That is, the addi-

tional experience gained from treating a type-k patient with d has spillover effects on all types of

patients to be treated with d in the future.

A physician who is more experienced with clipping or coiling incurs lower costs to deliver the

treatment. The c(·) function maps the stock of skills, edt , into the cost of doing d in period t.

I assume that the physician’s experience for watchful observation (d = 0) is fixed at zero. The

physician does not accumulate experience because she merely refers the patient to a neurologist

for regular brain scans, which neither improves nor requires her own skills. Consequently, the cost

of d = 0 is also fixed.

3.2.2 Bayesian learning and belief updating

Let Y d
t be the latent outcome of patient t when treated with d. Assume Y d

t follows a Bernoulli

distribution with success rate θdk:

Y d
t =


1, with probability θdk

0, with probability (1− θdk)
(3)

where k is the type of patient t, and θdk0 is the latent match value that the physician needs to learn.

The physician holds Beta-distributed prior beliefs about θdk

θdk0 ∼ Beta(adk0 , b
dk
0 ) (4)
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where (adk0 > 0, bdk0 ) are strictly positive parameters. They determine the mean and variance of the

distribution as follows:

µdk0 =
adk0

adk0 + bdk0
(5)

νdk0 =
adk0 b

dk
0

(adk0 + bdk0 )2(adk0 + bdk0 + 1)
(6)

Suppose the physician has treated ndkt cases of type-k patients with d at the beginning of period

t. Further suppose that sdkt cases are successful. Then the physician’s posterior belief is a Beta

distribution with parameters

adkt = adk0 + sdkt (7)

bdkt = bdk0 + (ndkt − sdkt ) (8)

The posterior mean is higher if sdkt is larger, holding ndkt constant; the posterior variance will be

larger if sdkt and (ndkt − sdkt ) are close. That is, the physician is more optimistic about the match

value of d for type-k when she sees more successes in the past, and is more confident in her beliefs

when past successes outnumber failures by a larger margin.

3.3 Model solution: the modified Gittins index policy

3.3.1 The physician’s dynamic problem

Thephysicianmaximizes the total discounted expected payoffby choosing the optimal sequence

of treatments

max
{dt}t=0,1,...

E[
∞∑
t=0

β̃tudt (θ
d
t , e

d
t , kt, r

dk
t ) | θ0, e0, k0, rdk0 ] (9)

where β̃ is themonthly discount factor. The expectation is over the transition of future states under

the chosen policy, conditional on the physician’s prior beliefs about treatment-patientmatch values

(θ0) and initial stock of skills (e0).

Define βi = β̃(1− λi0) as the physician-specific discount factor that accounts for patient arrival

rates, which vary significantly across physicians (Table 2). The physician receives zero payoff and

does not learnwhen no patient arrives. Therefore I transformproblem (9) for physician i to abstract

away no patient arrival. The discount factor in the transformed problem is βi, and the index t
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denotes the tth patient instead of the calendar time:15

max
{dt}t=0,1,...

E[

∞∑
t=0

βtiu
d
t (θ

d
t , e

d
t , kt, r

dk
t ) | θ0, e0, k0, rdk0 ] (10)

3.3.2 Model solution: an extension to Gittins index policy

The model above features (a) a high-dimensional state space that is typical of learning models;

(b) spillover effects of treatment-specific learning by doing across patient types. Once a physician’s

skill in one treatment improves, her future evaluation of that treatment is higher for all types of

patients. Tomeet these challenges, I solve themodel by extending the standardGittins index policy

in a multi-armed bandit framework.

The multi-armed bandit framework. First, the physician’s problem fits naturally into a multi-

armed bandit (MAB) framework. Each treatment option, d ∈ D, represents an arm of the bandit

machine. The arms generate random payoffs, udt , that depend on their states, (θdt , e
d
t , kt, r

dk
t ). The

physician’s problem (10) is to find the optimal way to operate the arms sequentially that maximizes

her total expected payoff.

Fitting into the MAB framework reduces the dimensionality of the physician’s problem by cir-

cumventing backward induction. Gittins (1979) proposes an index policy for the classic MAB

model. He calculates for each arm an index that only depends on the arm’s current state and

calibrates the value of pulling it until some optimal stopping time. The Gittins index policy sim-

ply selects the arm with the highest index in each period. Gittins then shows the index policy is

optimal in the standard MAB framework, which requires four assumptions: (a) exactly one arm is

chosen (or active) in each period; (b) the unchosen arms do not generate rewards; (c) states of the

unchosen arms remain frozen, generating the same average rewards in later periods; and (d) the

arms are independent.

Assumptions (a) and (b) hold trivially for the physician’s learning problem; (d) holds by the

assumption that treatment-patient match values are independent across options; (c) is where the

physician’s problem deviates from the classicMABmodel and falls into the realm of restless bandits.

Restless bandits extend the classic MAB by allowing even the inactive arms to generate payoff and

change states, but the stopping rule and the resulting index policy may no longer be optimal.16

15I keep the notation of t for convenience. All subsequent ts index the patient.
16Whittle (1988) examines generic restless bandit models in detail.
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The restlessness of the physician learning model, however, solely stems from the exogenous

transition of patient types (kt). Hence it is a special case in two ways. First, unlike the generic

restless bandit, the unchosen treatments do not generate any payoff. Second, the transition of pa-

tient types does not convey new information: both physician beliefs and experience (θdt , e
d
t ) remain

frozen for the unchosen d in period t; the restless state k only controls which of theK elements in

θdt to use when the physician makes the decision.17 Thanks to these special features, the physician

learning model has an optimal solution that closely resembles the standard Gittins index policy.

The modified Gittins index policy and its optimality. Now consider an auxiliary two-armed

bandit: one arm is treatment option d in state (θd, ed, k, rd); the other arm is the option of taking

a lump-sum payoff M and retiring the arm. Denote by φd(θd, ed, k, rd,M) the optimal expected

payoff from the auxiliary bandit. Let τd be the time to retire, which could be +∞ if d is chosen

indefinitely.

Assumption 1. Conditional on physician beliefs and skills, the expected time to retire in the two-armed

bandit process is independent of the current patient’s type, k:

E[τd | θd, ed, k, rd] = E[τd | θd, ed, rd], ∀k ∈ K (11)

Note that Assumption 1 does allow the expected time to retire to depend on the physician’s

beliefs about treatment-patient match value, treatment-specific skills, and financial incentives. It

only requires that the current patient’s type has no persistent effect on the expected duration of the

physician’s learning process. The assumption essentially treats the realization of patient type in

the initial period as a transitory shock. It is similar to assuming that the expected number of trials

with d does not depend on the order in which patients arrive, but is even less restrictive and only

focuses on the type of the current patient.18

Now I define the modified Gittins index and establish the optimality of the index policy:

Definition 1. For arm d in state (θd, ed, k, rd), construct a two-armed bandit process by adding an auxiliary

arm with a lump-sum retirement paymentM . The Gittins index for arm d,Mdk(θd, ed, rd), is the infimum

17This is different from typical restless bandits, where the evolving states of unchosen arms do change the expected
payoff in future periods. See Whittle (1988) or Chapter 6 of Gittins et al. (2011).

18The generic restless bandit process does not always have a state variable whose effect is as transitory as the patient
type in the physician’s learning model, making Assumption 1 too restrictive to impose on restless bandit models in
general.
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of all theM values that the physician is willing to take and retire. That is

Mdk(θd, ed, rd) := inf
M
{M : φd(θd, ed, k, rd,M) = M} (12)

The auxiliary arm helps calibrate the Gittins index for arm d, which can be seen as a price for

the sequence of payoffs from operating d while the option of takingMdk and retiring is always available

(Whittle, 1982).

Proposition 1. Under Assumption 1, the modified Gittins index policy that always selects the treatment

option with the highestMdk(θd, ed, rd) is optimal for the physician’s problem (10).

I defer the complete proof to Appendix A. The intuition follows Whittle (1982) and is straight-

forward: recall that the patient type, k, is the only state variable that makes the MAB restless;

the distribution of types is also exogenous, invariant over time, and known to the physician. The

physician’s problem from period (t + 1) onwards is no longer restless in expectation. Hence the

modified Gittins index can evaluate current and expected future payoffs separately, and the latter

resembles the standard Gittins index. Moreover, with Assumption 1, the optimal time to retire an

arm is independent on the current k. Hence the optimal stopping argument for the Gittins index

policy in standard MAB models goes through.

3.4 Characterization of the Gittins index

Although conceptually intuitive, the definition of the Gittins index in (12) is not helpful for

calculating its value in a given state.19 Brezzi and Lai (2002) developed a closed-form solution: they

first transform the MAB problem to a Wiener process; then they apply a diffusion approximation.

They show that the closed-form approximation is asymptotically optimal and performs well for

short or moderate horizons as well. I adapt their results to the physician’s problem and get the

following approximated Gittins index:

Mdk(θdt , e
d
t , r

d
t ) = udt (θ

d
t , e

d
t , kt, r

dk
t ) (13)

+βE

[
M̃(θdt+1, e

d
t+1) +

∞∑
τ=0

βτ
(
αE(rdt+1+τ )− c(edt+1+τ )

) ∣∣∣θdt , edt , kt
]

The first component is the flow payoff from choosing d for the current patient with type kt,

19Gittins et al. (2011) discussed various numerical methods of approximating the Gittins index with finite-horizon
models, but the computational cost is still prohibitively high.
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udt (θ
d
t , e

d
t , kt, r

d
t ). The Gittins index has a one-to-one relationship with the flow payoff: the former

must exactly compensate for any change in the latter tomake the physician just indifferent between

continuing with d and taking the retirement pay,M .

The second component, M̃ , highlights the result that the physician’s Bayesian learning problem

becomes a standard MAB from period (t + 1) onward.20 The physician expects to have a type-k

patient with probability λk, making the ex ante expected success rate in any subsequent period a

weighted average,

θ̄dt+s =
K∑
k=1

λkθ
dk
t+s, s ≥ 1 (14)

Hence the problem morphs into a MAB with one average type and the initial state (θ̄dt+1, e
d
t+1, r

d
t ),

thus getting rid of the restlessness in expectation. The (t + 1) states depend on the physician’s

learning result from period t: she updates her skill to edt+1 = edt + 1; she adjusts her belief θdk

upward (downward) if period t treatment is a success (failure) for k = kt; the beliefs about all

other types θdk′(k′ 6= k) remain unchanged. The expectation in the second term of (13) is over the

realization of yt.

Now I approximate the Gittins index of the standard MAB from (t + 1) onward, M̃ , following

the closed-form approximation by Brezzi and Lai (2002):

M̃(θdt+1, e
d
t+1) = (1− β)−1

[
µdt+1 +

√
νdt+1ψ(

νdt+1

−σ2µ,d lnβ
)

]
(15)

where

µdt+1 =

K∑
k=1

λkµ
dk
t+1, µdkt+1 =

adkt+1

adkt+1 + bdkt+1

(16)

νdt+1 =
K∑
k=1

λ2kν
dk
t+1, νdkt+1 =

adkt+1b
dk
t+1

(adkt+1 + bdkt+1)
2(adkt+1 + bdkt+1 + 1)

(17)

σ2µ,d = µdt+1(1− µdt+1) (18)

and ψ(·) is a closed-form, strictly increasing function with pre-calculated parameters.21

Finally, the last component of (13) accounts for the learning-by-doing effects and the financial

incentives. The physician expects future revenues of d for each type of patient to remain at their
20The learning-by-doing effects and the financial incentives will be accounted for by the last term of (13).
21I show the complete derivation and detailed specification of ψ in Appendix B.
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current level; she also takes the type-specific arrival rates into account and calculates the expected

revenue for d:

E(rdt+1+τ ) =
K∑
k=1

λkr
dk
t+1+τ =

K∑
k=1

λkr
dk
t , τ ≥ 0 (19)

The physician also expects treatment cost, c(edt+τ ), for clipping and coiling to keep decreasing as

the she accumulates more experience. The treatment cost of observation (d = 0) remains constant

over time. The financial incentives and treatment costs are then summed up from (t+ 1) onwards.

Discussion: determinants of choice probabilities. The udt (θdt , edt , kt, rd) and µdt+1 terms of (13)

show that the Gittins index is larger when the physician holds more optimistic beliefs about treat-

ment d’s (average) match value. The νdt+1 terms imply that the index is larger when the physician’s

beliefs are less precise, in which case the informational value of learning is higher. The β terms in-

dicate that the index is larger when the physician discounts the future less heavily or expects more

frequent patient arrivals. The σ2(µdt+1) term shows that the index is larger when µd takes on more

extreme values, and is the smaller when µd gets closer to 0.5. Moreover, the index is larger when

the physician is not yet at the flat part of c, i.e. when the gain from learning by doing is higher.

Finally, the above effects of µd and νd on the Gittins index carry over to those of type-specific

statistics, (µdk, νdk), because the former are linear combinations of the latter. For example, if the

physician’s belief about the match value between d and type-k is imprecise (a large νdk), then the

physician has stronger incentives to experiment with procedure d. But the magnitude of such

effects is governed by the type-specific arrival rates, λk. When type-k patients are rare, a small λk
limits the incentive of learning on type k patients. This result is intuitive as it connects the value

of learning with the probability of applying the information learned to future cases. It also echoes

the third set of reduced-form evidence presented in Section 2.3.

3.5 The physician’s decision rule

Given states (θdt , e
d
t , kt), the physician makes her treatment decision in period t by solving

max
d
Mdk(θdt , e

d
t , r

d
t ) + ξdt (20)

where ξdt is an error term that is observed by the physician but unknown to the econometrician. It

could stem from any idiosyncratic, treatment-specific shock such as patient preferences.22 I assume

22For example, patients may be concerned about the cosmetic effects of craniotomy during surgical clipping.
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that ξdt follows i.i.d. Type I extreme value distribution. The approach is common in the literature

and avoids degeneracy problemswhen forming the likelihood. It also implies simple logistic choice

probabilities, thereby facilitates computation.

4 The Econometric Model and Identification

4.1 The econometric model

Heterogeneous prior beliefs. I follow Dickstein (2014) and parameterize the beta-distributed

prior beliefs as

θdki0 | Xdk
i0 ∼ Beta(adki0 , b

dk
i0 ) (21)

µ(Xdk
i0 ; γµ) =

adki0
adki0 + bdki0

=
exp

(
Xdk
i0 γµ

)
1 + exp

(
Xdk
i0 γµ

) (22)

η(γη) = adki0 + bdki0 = exp(γη) (23)

The prior mean, µdki0 , is a logistic function of Xdk
i0 : the state average adoption rate of d for type-

k patients, its interaction with the dummy variable for whether physician i works primarily at a

teaching hospital, its interaction with the dummy variable for whether i is a young physician, and

the constant.23 The parameterization implies the prior variance

νdki0 =
µ (1− µ)

1 + η
(24)

and the Beta distribution parameters

adki0 = µη (25)

bdki0 = (1− µ) η (26)

Cost of delivering treatments, c(·). Following the literature on learning by doing (e.g. Argote

and Epple (1990)), I assume c(·) is bounded, monotonically decreasing, and convex for clipping

and coiling. Specifically,

c(edt ) =


αc1 exp(−αc2edt ), d = 1, 2

αc0, d = 0

(27)

23All variables inXdk
i0 are measured in period t = 0.
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where αc1 is the initial treatment cost before the physician has any experience; αc2 characterizes the

speed of learning, i.e. the rate at which treatment costs decreases with physician experience.24 The

cost of “delivering” watchful observation (d = 0) is constant at αc0. It is not clear whether watch-

ful observation requires any skill from the attending physician at all, so I make the simplifying

assumption that there is no learning by doing for d = 0.

Initial skills. I assume all physicians start with no stock of skills in coiling, i.e. e2i0 = 0. For

clipping, I set e1i0 = 0 for all physicians who enter the SID panel in 2004 or later because of data

limitations. Then I extrapolate the experience for the other physicians as e1i0 = (30 − Ti) × n1i0,

where n1i0 is physician i’s caseload in 2003, and Ti is the number of years that i show up in the SID

data. I assume each physician works for 30 years after completing residency and that the caseloads

stay constant over time. 25

Patient types. I group patients into 4 types along two dimensions: the type of aneurysm the pa-

tient has (ruptured or unruptured), and the patient’s health condition. Ruptured and unruptured

aneurysms are identified from standardized diagnosis codes (ICD-9-CM) in the SID data. Patients

are considered relatively healthy if they have no major comorbidities (diseases or disorders co-

existent with the primary condition, i.e. brain aneurysm) as recorded in the SID.

Type-specific patient arrival rates. I parameterize patient arrival as follows: λi0 is the probability

of having no patient, and is allowed to vary across physicians. λik for types k ∈ {1, . . . ,K} are type-

specific arrival rates. I allow them to depend on observable characteristics of physicians, namely

physician tenure (young or experienced) and whether the physician works primarily at a teaching

hospital.

24Argote and Epple (1990) show that most studies model learning in manufacturing as: c = α1x
−α2 . Compare it with

the specification above, edt = lnx. I am essentially assuming that experience with d reduces the marginal cost of the
next case faster than in a typical manufacturing setting, all else equal. It is likely to be the case because c() captures the
learning of an individual physician, who is immune to many decelerating problems with team learning, e.g. turnover
and miscommunication (Reagans et al., 2005).

25The assumption implies that a physician retires when her record discontinues in the SID data. Thus it may overes-
timate the pre-2003 experience for physicians showing up in all 12 years of SID data (2003-2014).
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4.2 Likelihood

Denote data on physician i in period t as ωit and the model parameters as Θ. The likelihood

contribution from (i, t) is

Lit(ωit; Θ) =


λi0 no patient arrives

(1− λi0)λk
∏
d∈D

[
exp(Mdk

it )

1 +
∑

d′ exp(Md′k
it )

(
θdk
)yt (1− θdk)1−yt]dit=d otherwise

(28)

whereMdk
it is specified in (13) and captures the dk-specific flow utility, the informational value of

learning, and the value of cost reduction from learning. Mdk
it depends on the current states: the

type of current patient, k; the physician’s belief, θdit, which summarizes the information on the

match value of d for each type of patient she collected in the past; the physician’s stock of surgical

skills, edt ; and the expected revenues of d at the hospital where the physician receives patient t,

rdt . Note that (θdt , e
d
t ) work as summary statistics for the physician’s entire learning history. They

affect the choice probability through themodified Gittins index,Mdk
it , which takes into account the

transition of future beliefs and skills that are contingent on the current choice.

4.3 Identification

I estimate the following parameters outside the model using the SID panel data: physician-

specific patient non-arrival rate, λi0; type-specific patient arrival rates that are dependent on physi-

cian characteristics, λik; and the true match values governing treatment success rates, θdk. The

richness of the SID data allows for precise estimates of these parameters.

Parameters on the treatment-type-specific prior belief determinants are identified in two steps.

First, the relative size of the parameters are identified from the variation in initial choices across

physicianswith different observable characteristics, and the variation in type-specificmarket shares

of each treatment at the time each physician started to practice. Second, locations of the priormeans

are pinned down by the differential response to patient outcomes, which is reflected in the switch-

ing patterns of physician choices in subsequent periods. Intuitively, the choice of a physician after

the initial period will respond strongly to treatment failures if her prior belief is close to 1, but only

moderately if her prior belief is close to 0. The reverse is true for choice responses after a success.

The observable outcomes in the SID data are crucial for the second step of identification.

Parameters in the cost function for delivering treatments are identified from two sources. The
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scale and curvature parameters, (αc1, α
c
2) in c(edt ) = αc1 exp(−αc2edt ) for clipping and coiling (d =

1, 2) are identified using the spillover of treatment-specific skills across patient types. Consider a

physician who treated a type-k patient in period t with option d = 1 and receives another type-k

patient in period (t+s). Suppose the physician has treated other types of patients between periods

t and (t+ s). The experience increases her treatment-specific surgical skill (edt+s > edt ) but does not

affect her treatment-type-specific belief (θdki,t+s = θdkit ). Hence the average change in the probability

of choosing d = 1 again among similar physicians identifies the shape of the cost function. Second,

the location parameter that captures the cost of observation (d = 0) is identified from the variation

in the choice probabilities between observation relative and intervention by new physicians who

have zero initial skills.

Finally, the weight on expected revenue in the physician’s flow payoff is identified from the rich

variation in treatment-type-specific revenues across hospitals.

5 Estimation Results

5.1 Parameter estimates

I estimate the model on the SID data from 2003 to 2014 with the maximum likelihood method.

Table 8 summarizes parameters estimated directly from the data; Table 9 reports the estimates of

structural parameters. For prior belief determinants, I find young and teaching-hospital physicians

tend to favor intervention in general, and coiling in particular. Moreover, the prior beliefs regarding

thematch value of treatment d for type-k patients respondpositively to themarket share of d among

type-k patients in the calendar quarter when a physician treated her first case. The prior beliefs of

young physicians are only moderately more responsive to the initial market shares, but those of

teaching hospital physicians are substantially more responsive.

The estimate on the weight of expected revenues shows that physicians havemoderate financial

incentives, which is consistent with findings in the literature (e.g., Johnson and Rehavi (2016)). For

example, the median total charge for clipping is $20,000 higher than that for coiling. All else equal,

a physician who believes the coiling success rate is 2 percentage points higher than clipping will

be indifferent between the two options.

The cost to deliver clipping or coiling declines fairly rapidly under the estimates. The marginal

return from learning by doing almost diminishes to zero after 15 cases. To put the numbers in

perspective, a physician who has done clipping 7 times and coiling only twice will be indifferent
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Conditional arrival rates by physician characteristics (λk)
Young Young Experienced Experienced

Patient type teaching non-teaching teaching non-teaching
Ruptured, healthy 0.350 0.301 0.284 0.273
(k = 1) (0.014) (0.010) (0.008) (0.006)
Ruptured, unhealthy 0.247 0.221 0.298 0.264
(k = 2) (0.013) (0.009) (0.008) (0.006)
Unruptured, healthy 0.248 0.287 0.198 0.214
(k = 3) (0.013) (0.010) (0.007) (0.006)
Unruptured, unhealthy 0.155 0.191 0.220 0.249
(k = 4) (0.011) (0.008) (0.007) (0.006)

Treatment-patient match value (θdk)
Clip Coil Obs

Patient type d = 1 d = 2 d = 0
Ruptured, healthy 0.271 0.400 0.377
(k = 1) (0.015) (0.016) (0.012)
Ruptured, unhealthy 0.290 0.351 0.166
(k = 2) (0.013) (0.014) (0.013)
Unruptured, healthy 0.734 0.931 0.907
(k = 3) (0.018) (0.007) (0.010)
Unruptured, unhealthy 0.591 0.843 0.849
(k = 4) (0.017) (0.009) (0.025)

Table 8: Parameters estimated directly from the SID data
Notes: Parameters are estimated using the main sample constructed from New York SID (2003-2014). Standard errors
of the mean estimator are reported in parentheses. Conditional patient arrival rate, λk, is the probability of getting a
type-k patient in any given month, conditional on having any patient. Treatment-patient match value, θdk, is measured
by the success rate when using treatment d on type-k patients. A treatment is a success if the patient can be discharged
home and does not need assisted care. Clip stands for surgical clipping; coil stands for endovascular coiling; obs stands
for watchful observation, i.e. no intervention. Ruptured and unruptured aneurysms are identified from standardized
diagnosis codes (ICD-9-CM) in the SID data. Healthy patients are those with no major comorbidities (diseases or disor-
ders in addition to the primary condition, i.e. brain aneurysm) as recorded in the SID. Young physicians are those with
no more than 5 years of experience in the data. Teaching-hospital physicians are those working primarily (measured
by caseload) at a teaching hospital. If a physician works at multiple hospitals, the one with the largest share of the
physician’s cases is used.Standard errors of the mean estimator are reported in parentheses.
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Parameters Notation Coefficient Std. Error
A. Determinants of prior belief (θdki0 )

Constant γµ0 -1.3261 0.4427
1(d = clip)× 1(young physician)i γµ1 0.6205 0.1316
1(d = coil)× 1(young physician)i γµ2 0.8853 0.2066
1(d = clip)× 1(teaching hospital)i γµ3 0.2267 0.0349
1(d = coil)× 1(teaching hospital)i γµ4 2.4203 0.2316
Initial market share of d for k γµ5 0.1026 0.0134
Initial market share of d for k × 1(young physician)i γµ6 0.0053 0.0097
Initial market share of d for k × 1(teaching hospital)i γµ7 0.2354 0.0373
Prior belief imprecision γη 5.7387 0.0013

B. Financial incentives
Weight on total revenue (in thousand real 2014 USD) α 0.0009 0.0001

C. Cost of delivering treatments
Weight on surgical costs αc1 0.1575 0.0665
Speed of cost reduction from learning αc2 0.3761 0.1240
Cost of no intervention αc0 0.0397 0.0054

− log(Likelihood) 12805.118

Table 9: Structural parameter estimates
Notes: Parameters are estimated usingmaximum likelihood on the main sample constructed fromNew York SID (2003-
2014). The vector of γµ are coefficients in the logistic function that determines the mean of physician i’s prior belief
about the match value of d for type-k patients. Initial market shares are the shares of type-k patients treated by d in the
calendar quarter of physician i’s entry. Total revenue is the total charge for the inpatient stay in thousands of real 2014
dollars. Young physicians are those with no more than 5 years of experience in the data. Teaching-hospital physicians
are those working primarily (measured by caseload) at a teaching hospital. If a physician works at multiple hospitals,
the one with the largest share of the physician’s cases is used.
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Figure 2: Example of model-implied belief evolution: converging posterior means and shrinking
variances
Notes: The horizontal axes show the number of times physicians have used the treatment on the given type of patient
(healthy with unruptured aneurysms). The vertical axes show beliefs about the treatment-type match value, measured
by the treatment success rate. A treatment is a success if the patient can be discharged home and does not need assisted
care. Clip stands for surgical clipping; coil stands for endovascular coiling; obs stands for watchful observation, i.e. no
intervention.The thick black line in each figure plots the posterior mean of physicians’ beliefs about that treatment for
the particular type of patient. The thin gray lines delineate the 95% confidence interval. The belief evolution is simulated
from 1,000 samples using the estimated parameters and the observed sequences of patients. The horizontal blue line
shows the “true” latent match value estimated directly from the data as a benchmark.

between the two options even if she believes the coiling success rate to be 6.5 percentage points

higher.

I plot the evolution of physician posterior beliefs about the match values of the three options for

healthy patients with unruptured aneurysms as an example. Figure 2 traces the simulate posterior

beliefs against the number of times physicians have used the treatment on that type of patient. The

horizontal blue line shows the latent match value estimated directly from the data as a benchmark.

The thick black line in each figure plots the posterior mean of physicians’ beliefs about that treat-

ment for the particular type of patient, which converges rapidly to the “truth.” The thin gray lines

delineate the 95% confidence interval, which shrinks over time.

5.2 Model fit: choice probabilities and transition dynamics

I first compare the observed and model-predicted choice probabilities as a first evaluation of

model fit. Table 10 compares the observed and predicted choice probabilities, and Figures 3 and

4 illustrate the comparison. The model captures the overall pattern, with slightly higher choices

probabilities for the two interventions. It also does a good job in fitting the patient type-specific

choices probabilities for 2 of the 4 types. For patients with unruptured aneurysms, the model over-
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predicts the probability of no intervention on healthy patients and the probability of clipping on

unhealthy ones. Note that the direct comparison of choices probabilities is a stringent assessment

of the model fit. The strong learning-related path dependence tends to exacerbate any difference

in observed and predicted choices in the earlier periods.

Choice probability
Clipping Coiling Observation

Overall Data 0.303 0.409 0.288
Model [0.342] [0.339] [0.320]

By patient type
Ruptured, healthy Data 0.251 0.275 0.474

Model [0.237] [0.282] [0.481]
Ruptured, unhealthy Data 0.401 0.351 0.248

Model [0.487] [0.313] [0.200]
Unruptured, healthy Data 0.236 0.466 0.299

Model [0.131] [0.358] [0.511]
Unruptured, unhealthy Data 0.325 0.594 0.082

Model [0.519] [0.425] [0.056]

Table 10: Model fit: choice probabilities by patient type
Notes: The Data rows report observed choice probabilities in the SID data. The Model rows report model-predicted
choice probabilities (in brackets) from 1,000 simulations using the estimated parameters and the observed sequences
of patients. Ruptured and unruptured aneurysms are identified from standardized diagnosis codes (ICD-9-CM) in
the SID data. Healthy patients are those with no major comorbidities (diseases or disorders in addition to the primary
condition, i.e. brain aneurysm) as recorded in the SID.

I then compare the observed and model-predicted choice transition probabilities conditional on

previous period choices, outcomes, and patient types. Table 11 summarizes the results; Figure 5

visualizes the comparison.

The model predictions closely resemble what is observed in the data. I first examine the overall

probability of choosing the same treatment in period (t + 1) as that in period dt, conditional on

the previous period choice (dt), outcome (yt), and whether patient types in the two periods are the

same. The conditional probabilities capture the reluctance of physicians to experiment further with

a treatment option.

Both the data and the model predictions show that physicians are more likely to keep using a

treatment when the previous case treated with it was a success, especially when the patients in

the two adjacent periods are of the same type. This is consistent with the relevance of Bayesian

learning only for the same type, because beliefs about treatment match values are type-specific.

I further break down the whole sample by physician skill level. Table 12 shows the transition

probabilities when the physician’s experience edt is high (greater than the 75th percentile), medium
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Figure 3: Model fit: overall choice probabilities
Notes: The Data bars plot the average choice probability of a treatment observed in the data. The Model bars plot the
predicted probability simulated from 1,000 samples using the estimated parameters and the observed sequences of
patients. Clip stands for surgical clipping; coil stands for endovascular coiling; obs stands for watchful observation, i.e.
no intervention.
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Figure 4: Model fit: choice probabilities by patient type
Notes: TheData bars plot the average choice probability of a treatment for each of the four patient types observed in the
data. The Model bars plot the predicted probability simulated from 1,000 samples using the estimated parameters and
the observed sequences of patients. Clip stands for surgical clipping; coil stands for endovascular coiling; obs stands for
watchful observation, i.e. no intervention. Ruptured and unruptured aneurysms are identified from standardized diag-
nosis codes (ICD-9-CM) in the SID data. Healthy patients are those with no major comorbidities (diseases or disorders
in addition to the primary condition, i.e. brain aneurysm) as recorded in the SID.
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Pr(dt+1 = dt | dt, yt, kt, kt+1)
Clip Coil Obs
(1) (2) (3)

Same type, previous case was a success
Pr(dt+1 = dt | dt, yt = 1, kt = kt+1)
Data 0.574 0.761 0.703
Model [0.633] [0.703] [0.684]
Same type, previous case was a failure
Pr(dt+1 = dt | dt, yt = 0, kt = kt+1)
Data 0.553 0.541 0.607
Model [0.597] [0.622] [0.564]
Different type, previous case was a success
Pr(dt+1 = dt | dt, yt = 1, kt 6= kt+1)
Data 0.464 0.591 0.350
Model [0.450] [0.671] [0.312]
Different type, previous case was a failure
Pr(dt+1 = dt | dt, yt = 0, kt 6= kt+1)
Data 0.463 0.524 0.468
Model [0.445] [0.652] [0.355]

Table 11: Model fit: choice transition probabilities conditional on preceding choice, patient type,
and outcome
Notes: The table reports the probability of choosing the same treatment in period (t+1) as that in period dt, conditional
on the previous period choice (dt), outcome (yt), andwhether patient types in the two periods are the same. A treatment
is a success if the patient can be discharged home and does not need assisted care. Clip stands for surgical clipping;
coil stands for endovascular coiling; obs stands for watchful observation, i.e. no intervention.Data rows show observed
probabilities; Model rows show model-predicted probabilities (in brackets) from 1,000 simulations using the estimated
parameters and the observed sequences of patients.
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Figure 5: Model fit: choice transition probabilities conditional on preceding choice, patient type,
and outcome
Notes: TheData bars in each figure plot the probability of choosing the same treatment in a period as the previous period,
conditional onwhether patients in the two periods are of the same type, andwhether the previous treatment is a success
(y = 1). A treatment is a success if the patient can be discharged home and does not need assisted care.The left panel
shows this probability for clipping, and the right for coiling. The Model bars plot the predicted probability simulated
from 1,000 samples using the estimated parameters and the observed sequences of patients.

(below the 75th percentile and above the 25th percentile), or low (below the 25th percentile). Fig-

ure 6 illustrates the comparison. The predicted choice transition probabilities are able to capture

the stronger tendency to keep choosing the same treatment when the physicians already have high

skills in it. The choice patterns highlight the diminishing learning by doing incentives as the sur-

gical skills accumulate.

5.3 Disentangling Bayesian learning from learning by doing

With the model estimates, I use simulation to disentangle the impacts of Bayesian learning and

learning by doing. Because of interactions between the two kinds of learning, their implications

on treatment choices and outcomes are often hard to separate in reduced-form analyses.

Table 13 compares the observed choice probabilities and patient outcomes with those when one

or both kinds of learning are shut down. The first row (Data) in the top panel shows the overall

choice probabilities in the data. The second row (No Bayesian learning) reports the choice proba-

bilities from 1,000 simulations based on the model estimates, assuming physicians only accumu-

late skills via learning by doing but no longer update beliefs via Bayesian learning. The resulting
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Pr(dt+1 = dt | dt, yt, kt, kt+1)
High experience Medium experience Low experience

Clip Coil Obs Clip Coil Obs Clip Coil Obs
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Same type, previous case was a success: Pr(dt+1 = dt | dt, yt = 1, kt = kt+1)
Data 0.635 0.792 0.662 0.566 0.740 0.758 0.453 0.627 0.625
Model [0.683] [0.795] [0.753] [0.604] [0.653] [0.600] [0.582] [0.562] [0.606]
Same type, previous case was a failure: Pr(dt+1 = dt | dt, yt = 0, kt = kt+1)
Data 0.628 0.681 0.563 0.575 0.515 0.652 0.375 0.382 0.594
Model [0.662] [0.769] [0.587] [0.574] [0.589] [0.549] [0.537] [0.450] [0.560]
Different type, previous case was a success: Pr(dt+1 = dt | dt, yt = 1, kt 6= kt+1)
Data 0.486 0.668 0.411 0.484 0.563 0.331 0.369 0.311 0.287
Model [0.422] [0.867] [0.213] [0.484] [0.673] [0.303] [0.520] [0.432] [0.340]
Different type, previous case was a failure: Pr(dt+1 = dt | dt, yt = 0, kt 6= kt+1)
Data 0.516 0.635 0.484 0.468 0.520 0.504 0.363 0.221 0.339
Model [0.442] [0.862] [0.467] [0.439] [0.681] [0.350] [0.489] [0.416] [0.361]

Table 12: Model fit: choice transition probabilities conditional on preceding choice, patient type,
and outcome (by physician skill level)
Notes: The table reports the probability of choosing the same treatment in period (t+1) as that in period dt, conditional
on the previous period choice (dt), outcome (yt), andwhether patient types in the two periods are the same. A treatment
is a success if the patient can be discharged home and does not need assisted care. Clip stands for surgical clipping; coil
stands for endovascular coiling; obs stands for watchful observation, i.e. no intervention. Data rows show observed
probabilities; Model rows show model-predicted probabilities (in brackets) from 1,000 simulations using the estimated
parameters and the observed sequences of patients. The first three columns report the transition probability for the
whole sample. The remaining 9 columns show the transition probabilities when the physician’s experience edt is high
(greater than the 75th percentile), medium (below the 75th percentile and above the 25th percentile), or low (below the
25th percentile).
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Figure 6: Model fit: choice transition probabilities conditional on preceding choice, patient type,
and outcome (by physician skill level)
Notes: The Data bars in each figure plot the probability of choosing the same treatment in a period as the previous
period, conditional on whether patients in the two periods are of the same type, and whether the previous treatment
was a success (y = 1). A treatment is a success if the patient can be discharged home and does not need assisted
care.The top 3 panels report the probability for clipping, and the bottom 3 for coiling. TheModel bars plot the predicted
probability simulated from 1,000 samples using the estimated parameters and the observed sequences of patients. The
3 columns use the subsamples of physicians whose experience edt is high (greater than the 75th percentile), medium
(below the 75th percentile and above the 25th percentile), or low (below the 25th percentile), respectively.
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choice probability of clipping is 48.3%, a sizable increase from the observed 30.3%; that of coiling

decreases to 34.4% from the observed 40.9%. The corresponding patient outcomes also worsens:

the overall treatment success rate is 52.6%, a 1.8 percentage points reduction from the observed

54.4%.

The third row (No learning) further assumes that physicians no long accumulate skills via learn-

ing by doing as well, thereby blocking both kinds of learning. The simulated choice probability of

clipping increases even more to 53.4%, while that of coiling more than halves from the previously

level to a mere 16.3%. Treatment success rate also decreases to 51%, 3.4 percentage points lower

than that observed in the data.

The comparison disentangles the effects of Bayesian learning and learning by doing. The effect

of Bayesian learning dominates that of learning by doing on the utilization of clipping, explaining

78% of the changes when learning is shut down; but it is dominated by learning by doing on

the adoption of coiling, explaining only 26% of the changes. Their effects on patient outcomes

are comparable in magnitudes, with Bayesian learning’s share being 54% and learning by doing’s

being 46%.

The relative magnitudes of Bayesian learning and learning by doing incentives also vary sub-

stantially across different types of physicians. The remainder of Table 13 breaks down the com-

parison by physician subgroups. For example, experienced physicians at non-teaching hospitals

demonstrate a stronger tendency to choose clipping instead of coiling when their learning incen-

tives are removed. This is consistent with their higher initial stock of surgical skills in clipping, as

well as less optimistic prior beliefs in coiling.

6 Counterfactual Analyses

I conduct two sets of counterfactual analyses in this section. First, I quantify the magnitude of

physician learning. To that end, I (a) explore how choices and outcomes would change if physi-

cians were myopic and ignore the future returns to learning; and (b) measure how the variation

in physician choices would change if one or both channels of learning are shut down. Second, I

evaluate the impacts of two payment reforms: uniform payments regardless of the choice of in-

tervention; and outcome-based payments that reward good patient outcomes and penalize bad

ones.

38



Choice probability Success
Pr(clip) Pr(coil) Pr(obs) rates

Overall
Data 0.303 0.409 0.288 0.544
No Bayesian learning 0.483 0.344 0.173 0.526
No learning 0.534 0.163 0.304 0.510

By physician subgroups
Experienced physicians at non-teaching hospitals
Data 0.307 0.341 0.353 0.528
No Bayesian learning 0.579 0.138 0.283 0.509
No learning 0.640 0.048 0.312 0.496
Experienced physicians at teaching hospitals
Data 0.293 0.431 0.277 0.557
No Bayesian learning 0.427 0.475 0.098 0.514
No learning 0.711 0.092 0.198 0.465
Young physicians at non-teaching hospitals
Data 0.334 0.460 0.206 0.559
No Bayesian learning 0.408 0.503 0.090 0.562
No learning 0.302 0.372 0.326 0.565
Young physicians at teaching hospitals
Data 0.242 0.498 0.260 0.541
No Bayesian learning 0.425 0.450 0.125 0.531
No learning 0.236 0.282 0.483 0.541

Table 13: Simulation analyses: disentangling the effects of two kinds of learning
Notes: No Bayesian learning andNo learning rows report the simulated choice probabilities and patient outcomes assum-
ing there is only learning by doing but no Bayesian learning, and no learning at all, respectively. The results are based
on 1,000 simulations using the estimated parameters and the observed sequences of patients. A treatment is a success
if the patient can be discharged home and does not need assisted care. Clip stands for surgical clipping; coil stands for
endovascular coiling; obs stands for watchful observation, i.e. no intervention. Young physicians are those with nomore
than 5 years of experience in the data. Teaching-hospital physicians are thoseworking primarily (measured by caseload)
at a teaching hospital. If a physician works at multiple hospitals, the one with the largest share of the physician’s cases
is used.
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6.1 Physician myopia

Physicians could be myopic in two ways: they could make treatment choices solely based on

the expected outcome of the current patient; or they could make treatment choices based on their

flow payoff, taking into account the current patient’s outcome, the expected revenue, and the cost

of delivering the chosen treatment.

Table 14 compares the choice probabilities and patient outcomes, assuming physicians maxi-

mize the expected outcome of their current patients. With this form of myopia, physicians would

choose clipping less often than observed in the data. The contrast suggests that the observed

choices of clippingmay be partially driven by lower costs of delivering treatment due to high stocks

of clipping skills, or by the higher expected revenue of clipping. The change in the choice probabil-

ities of coiling varies across different groups of physicians: young physicians at teaching hospitals

would choose coiling more often, reflecting the above-noted higher prior beliefs about the value

of coiling; other types of physicians choose coiling less often. But all groups of physicians would

choose no intervention more often had they been solely maximizing patient outcomes, which sug-

gests over-intervention in the data.

The over-intervention is often at the expense of inferior patient outcomes. Panel B of Table 14

shows that all types of patients would have moderately higher chances of good outcomes if physi-

cians were myopic and maximizing patient outcomes. Moreover, patients of the two unhealthy

types are most likely to receive a different treatment and would see more improvement in out-

comes than with physician myopia. This suggests that forward-looking physicians tend to deviate

more from the myopic best treatment on unhealthy types, thereby hurting the outcomes of these

patients.

Thedeviation frommyopic best choices does not imply inferior outcomes for all patients, though.

The right panel of Figure 7 compares the observed outcomes (dark bars) with those under outcome

maximization (light bars). The outcomes would be better under physician myopia on average, but

the potential changes vary. For patients observed to receive clipping, the outcomes would im-

prove significantly if physicians were myopic. For patients observed to receive coiling, however,

the outcomes would be slightly worse under myopia. This shows that experimentation can help

physicians learn about the match value of some treatments, thereby improving patient outcomes.

That physicians only maximize the expected outcome of current patients is in stark contrast

with strategic forward-looking physicians maximizing their total discounted payoffs. Hence I also
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Choice probability Success Fraction with
Pr(clip) Pr(coil) Pr(obs) rates deviation

Overall
Data 0.303 0.409 0.288 0.544
Model 0.222 0.399 0.379 0.573

A. By physician subgroups
Experienced physicians at non-teaching hospitals
Data 0.307 0.341 0.353 0.528
Model 0.270 0.263 0.466 0.579
Experienced physicians at teaching hospitals
Data 0.293 0.431 0.277 0.557
Model 0.234 0.341 0.425 0.536
Young physicians at non-teaching hospitals
Data 0.334 0.460 0.206 0.559
Model 0.127 0.659 0.214 0.605
Young physicians at teaching hospitals
Data 0.242 0.498 0.260 0.541
Model 0.228 0.448 0.323 0.561

B. By patient types k
Ruptured, healthy
Data 0.251 0.275 0.474 0.357
Model 0.116 0.185 0.699 0.369 0.301
Ruptured, unhealthy
Data 0.401 0.351 0.248 0.281
Model 0.633 0.276 0.092 0.295 0.908
Unruptured, healthy
Data 0.236 0.466 0.399 0.877
Model 0.009 0.318 0.673 0.913 0.327
Unruptured, unhealthy
Data 0.325 0.594 0.082 0.761
Model 0.087 0.909 0.004 0.821 0.996

Table 14: Counterfactual experiment: physicians maximizing current patient outcomes
Notes: TheModel rows report the simulated choice probabilities and patient outcomes, assuming physicians maximize
current-period expected patient outcomes (plus a treatment-specific, Type-I extreme value error). The results are based
on 1,000 simulations using the estimated parameters and the observed sequences of patients. A treatment is a success
if the patient can be discharged home and does not need assisted care. Clip stands for surgical clipping; coil stands
for endovascular coiling; obs stands for watchful observation, i.e. no intervention.Fraction with deviation is the fraction
of patients with the given type who would receive a different treatment had the physician been maximizing patient
outcome. Panel A breaks the whole sample down by physician subgroups; Panel B by patient types. Young physicians
are those with nomore than 5 years of experience in the data. Teaching-hospital physicians are those working primarily
(measured by caseload) at a teaching hospital. If a physician works at multiple hospitals, the one with the largest share
of the physician’s cases is used. Ruptured and unruptured aneurysms are identified from standardized diagnosis codes
(ICD-9-CM) in the SID data. Healthy patients are those with no major comorbidities (diseases or disorders in addition
to the primary condition, i.e. brain aneurysm) as recorded in the SID.
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Figure 7: Counterfactual experiment: choice probabilities when physicians maximize current pa-
tient outcomes
Notes: The Data bars plot the observed choice probabilities (left panel) and treatment success rates (right panel). The
Model bars plot the simulated choice probabilities and patient outcomes, assuming physicians maximize current-period
expected patient outcomes (plus a treatment-specific, Type-I extreme value error). Clip stands for surgical clipping; coil
stands for endovascular coiling; obs stands for watchful observation, i.e. no intervention. A treatment is a success if the
patient can be discharged home and does not need assisted care.

examine the choices and outcomes if physicians only maximize their flow payoff but ignore the

continuation values. Table 15 compares the observed and simulated choices and outcomes. On

average, the choice probabilities for clipping stay relatively unchanged, but those for coiling de-

crease substantially if physicians were onlymaximizing flow payoffs. Additionally, there is a lower

probability that patient outcomes would be good. The differences imply that it is the future value

of learning that encourages experimentation with coiling, which helps improve patient outcomes.

Panel A of Table 15 breaks the whole sample down by physician groups. All groups of physi-

cianswould reduce the adoption of coiling undermyopia. Moreover, experiencedphysician choices

will mainly transition towards clipping, in which they had accumulated more skills; young physi-

cian choices will mainly transition towards no intervention, given their low skills in both clipping

and coiling.

Panel B of Table 15 looks at the differential response by patient type. Physicians still tend to

deviate from the treatment thatmaximizes the flowutilitywhen seeing patients of unhealthy types.

The difference between observed and predicted treatment success rates also shows that these types

of patients actually benefit from the experimentation of forward-looking physicians: their success

rates would be 4-9 percentage points lower had the physician ignored the future values of learning.

Figure 8 illustrates the changes in choice probabilities and patient outcomes if physicians only
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Choice probability Success Fraction with
Pr(clip) Pr(coil) Pr(obs) rates deviation

Overall
Data 0.303 0.409 0.288 0.544
Model 0.308 0.071 0.548 0.516

A. By physician subgroups
Experienced physicians at non-teaching hospitals
Data 0.307 0.341 0.353 0.528
Model 0.502 0.013 0.485 0.508
Experienced physicians at teaching hospitals
Data 0.293 0.431 0.277 0.557
Model 0.515 0.010 0.475 0.468
Young physicians at non-teaching hospitals
Data 0.334 0.460 0.206 0.559
Model 0.153 0.209 0.639 0.568
Young physicians at teaching hospitals
Data 0.242 0.498 0.260 0.541
Model 0.116 0.121 0.762 0.536

B. By patient types k
Ruptured, healthy
Data 0.251 0.275 0.474 0.357
Model 0.235 0.052 0.713 0.353 0.287
Ruptured, unhealthy
Data 0.401 0.351 0.248 0.281
Model 0.519 0.053 0.428 0.240 0.572
Unruptured, healthy
Data 0.236 0.466 0.399 0.877
Model 0.117 0.090 0.793 0.889 0.207
Unruptured, unhealthy
Data 0.325 0.594 0.082 0.761
Model 0.675 0.098 0.227 0.674 0.773

Table 15: Counterfactual experiment: physicians maximizing flow payoff
Notes: The Model rows report the simulated choice probabilities and patient outcomes assuming physicians maximize
flow payoff (plus a treatment-specific, Type-I extreme value error). The results are based on 1,000 simulations using the
estimated parameters and the observed sequences of patients. A treatment is a success if the patient can be discharged
home anddoes not need assisted care. Clip stands for surgical clipping; coil stands for endovascular coiling; obs stands for
watchful observation, i.e. no intervention.Fraction with deviation is the fraction of patients with the given typewhowould
receive a different treatment had the physician beenmaximizing her flowpayoff. Panel A breaks thewhole sample down
by physician subgroups; Panel B by patient types. Young physicians are those with no more than 5 years of experience
in the data. Teaching-hospital physicians are those working primarily (measured by caseload) at a teaching hospital. If
a physician works at multiple hospitals, the one with the largest share of the physician’s cases is used. Ruptured and
unruptured aneurysms are identified from standardized diagnosis codes (ICD-9-CM) in the SID data. Healthy patients
are those with no major comorbidities (diseases or disorders in addition to the primary condition, i.e. brain aneurysm)
as recorded in the SID.
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maximize their own flow payoffs. Patients would get inferior outcomes on average, which is the

artifact of the physicians taking into account the cost of delivering care and expected revenue in

addition to patient outcomes. Patients who are observed to receive coiling see the largest decline in

outcomes with physician myopia. The decline highlights the value of learning by forward-looking

physicians.
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Counterfactual: physician flow payoff maximization

Figure 8: Counterfactual experiment: choice probabilities when physicians maximize flow payoff
Notes: The Data bars plot the observed choice probabilities (left panel) and treatment success rates (right panel). The
Model bars plot the simulated choice probabilities and patient outcomes, assuming physicians maximize flow payoff
(plus a treatment-specific, Type-I extreme value error). Clip stands for surgical clipping; coil stands for endovascular
coiling; obs stands for watchful observation, i.e. no intervention. A treatment is a success if the patient can be discharged
home and does not need assisted care.

Finally, Figure 9 summarizes the heterogeneous effects on outcomes by patient type. Not sur-

prisingly, all patients would get better outcomes if physicians were maximizing the current patient

outcomes. But when physicians maximize their own flow payoffs, patients of unhealthy types

would have lower treatment success rates because of the reduced experimentation. The outcomes

of healthy patients would not change much.

6.2 Learning and variations in the choice of care

I also gauge the magnitude of learning by quantifying its contribution to the variation in physi-

cians’ choice of care. The variation of particular interest is that in the physicians’ utilization rate of

coiling, the new procedure, where learning tend to be more important. To this end, I shut down

one or both learning channels and compare the resulting overall, within-, and between-physician

variation.
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Figure 9: Counterfactual experiment: patient outcomes under physician myopia
Notes: The Data bars plot the observed treatment success rates. The Model bars plot the simulated success rates under
physician myopia. A treatment is a success if the patient can be discharged home and does not need assisted care.The
right panel assumes physicians maximize current patient outcomes, and the left panel assumes physicians maximize
their own flow payoffs. Ruptured and unruptured aneurysms are identified from standardized diagnosis codes (ICD-
9-CM) in the SID data. Healthy patients are those with no major comorbidities (diseases or disorders in addition to the
primary condition, i.e. brain aneurysm) as recorded in the SID.
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Panel A of Table 16 presents the baseline variation in physicians choice probability of coiling.

The first row shows a substantial overall variation of 0.292 among all cases in the sample; the

between-physician andwithin-physician variations are 0.199 and 0.116, respectively. The four sub-

sequent rows break the sample down by patient type. Physicians vary more in their choice of care

for unruptured cases, conditional on patient health, and for relatively healthy patients, conditional

on the type of aneurysm.

Panel B shows the counterfactual variationwhenonly learning bydoing is present, while Bayesian

learning is shut down: Physicians still start from heterogeneous priors, but no longer update their

beliefs after observing patient outcomes. Although the resulting overall and between-physician

variation shrink only slightly compared with the baseline, the within-physician increases by at

least 20%. That is, Bayesian learning helps to reduce within-physician variation as physician be-

liefs converge.

Conversely, Panel C keeps only Bayesian learning and shuts down learning by doing: Physi-

cians’ cost of delivering surgery no longer decreases as they build volume. Now it is the between-

physician that changes significantly, with a 23% reduction in thewhole sample. Thewithin-physician

variation, on the contrary, increases by varying amounts depending on the patient type. The over-

all variation is dominated by the former effect, though, with reductions between 16-25% across

different patient types. Hence learning by doing mainly adds to the within-physician variation.

The intuition is also strong here: learning by doing solidifies the randomness in a physician’s past

outcomes, thereby creating divergence even among physicians were initially similar.

Finally, Panel D shuts down both types of learning. The overall variation shrinks by 20%, which

is the fraction that is attributable to learning. Previous studies (such as Finkelstein et al. (2016)) have

found that supply-side factors explain about 60% of total variation in the choice of care. Taking

that figure into account, learning explains about one-third of supply-side variation, which is a

considerable share.

6.3 Payment reforms

I continue to use the estimatedmodel to evaluate the potential impacts of two payment reforms.

I first examine a payment reformwhere all payments are independent of the treatment choices, ex-

cept when no intervention is chosen. Then I examine a reform that links payments with patient

outcomes, using the Value Modifier (VM) program by the Centers for Medicare of Medicaid Ser-

vices (CMS) as an example.
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Overall Between- Within-
variation Change* physician Change* physician Change*

A. Baseline (Learning by doing and Bayesian learning both present)
All 0.292 0.199 0.116
Ruptured, healthy 0.278 0.215 0.071
Ruptured, unhealthy 0.249 0.187 0.094
Unruptured, healthy 0.335 0.248 0.057
Unruptured, unhealthy 0.287 0.191 0.104

B. Only learning by doing present; Bayesian learning shut down
All 0.282 -3.4% 0.193 -3.3% 0.140 21.1%
Ruptured, healthy 0.273 -1.8% 0.213 -1.1% 0.105 47.8%
Ruptured, unhealthy 0.250 0.2% 0.183 -2.5% 0.126 34.7%
Unruptured, healthy 0.330 -1.3% 0.253 2.2% 0.117 107.2%
Unruptured, unhealthy 0.268 -6.7% 0.173 -9.0% 0.125 20.2%

C. Only Bayesian learning present; learning by doing shut down
All 0.230 -21.0% 0.154 -23.0% 0.123 5.6%
Ruptured, healthy 0.208 -25.1% 0.157 -26.8% 0.097 36.5%
Ruptured, unhealthy 0.200 -19.9% 0.164 -12.3% 0.104 11.5%
Unruptured, healthy 0.272 -18.6% 0.182 -26.6% 0.107 88.4%
Unruptured, unhealthy 0.242 -15.8% 0.183 -3.8% 0.109 4.7%

D. Neither kinds of learning present, both shut down
All 0.234 -19.8% 15.9% -20.4% 0.116 0.0%
Ruptured, healthy 0.212 -23.8% 0.163 -24.4% 0.087 22.5%
Ruptured, unhealthy 0.202 -19.0% 0.169 -9.9% 0.097 3.9%
Unruptured, healthy 0.278 -16.9% 0.184 -25.5% 0.105 85.3%
Unruptured, unhealthy 0.244 -14.8% 0.187 -1.7% 0.101 -2.9%

Table 16: Counterfactual experiment: effects of learning on choice variation
Notes: * Change reports the change in the counterfactual variation from the baseline, as a percentage of the baseline
variation. Variation in the choice of care is measured by the standard deviation in the fraction of cases treated by coiling.
All refers to the whole sample; Ruptured, healthy and similar rows use only the subsample of cases of that type.
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6.3.1 Uniform payments across treatment

As noted above, the payment differentials between clipping and coiling may induce physicians

to deviate from the treatment that maximizes patient outcomes. As such, I explore the change in

physician choice probabilities and patient outcomes if payments are independent of the choice of

intervention. In this counterfactual experiment, I set the total charges for clipping and coiling to

be the same within each hospital, conditional on patient type. The charges for no intervention are

left unchanged.

Table 17 shows that when clipping and coiling generate the same revenue, physicians tend to

choose more intervention in general. The resulting patient outcomes are similar, but physician

revenues per case increase substantially from 114 to 176 thousand dollars. The physician responses

vary by tenure and the type of hospital, though. Experienced physicians at non-teaching hospitals

tend to do even more clipping and less coiling when the revenues are independent of choices.

This implies that the existing fee differentials between clipping and coiling for these physicians are

counteracting the differences in physician beliefs and skills that favor clipping. For other groups

of physicians, however, the payment reform induces more take-up of coiling, suggesting that the

existing fee differentials are discouraging the choice of coiling.

Figures 10 and 11 illustrate the comparisons of choice probabilities and patient outcomes, re-

spectively. Figure 10 highlights the heterogeneous response across physician groups to the pay-

ment reform: all physicians except those who are experienced and work at non-teaching hospitals

would choose coiling more often when the fee differentials are eliminated. Figure 11 summa-

rizes the change in patient outcomes, breaking the whole sample down by both physician groups

and observed treatments in the data. Overall, patients treated by experienced physicians would

have slightly lower success rates under the payment reform, and those treated by young physicians

would have superior outcomes. Between patients who are observed to receive different treatments,

those treated with clipping in the data would generally have better outcomes had the payments

been equal. On the contrary, those treated with coiling in the data would have moderately worse

outcomes under uniform payments.

6.3.2 Outcome-contingent payments

There have been ongoing proposals to link payments for medical services with patient out-

comes. The CMS is currently rolling out the Value Modifier (VM) program for Medicare bene-
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Choice probability Success Revenue/case
Pr(clip) Pr(coil) Pr(obs) rates ($1,000)

Overall
Data 0.303 0.409 0.288 0.544 114.25
Model 0.366 0.472 0.162 0.545 176.06

By physician subgroups
Experienced physicians at non-teaching hospitals
Data 0.307 0.341 0.353 0.528 87.96
Model 0.515 0.211 0.274 0.521 138.00
Experienced physicians at teaching hospitals
Data 0.293 0.431 0.277 0.557 119.00
Model 0.324 0.591 0.085 0.530 203.45
Young physicians at non-teaching hospitals
Data 0.334 0.460 0.206 0.559 131.16
Model 0.207 0.713 0.080 0.594 184.56
Young physicians at teaching hospitals
Data 0.242 0.498 0.260 0.541 165.58
Model 0.261 0.631 0.108 0.557 238.07

Table 17: Counterfactual experiment: uniform payments for clipping and coiling
Notes: TheModel rows report the simulated choice probabilities and patient outcomes, assuming uniform payments be-
tween clipping and coiling, conditional on patient types and hospitals. The results are based on 1,000 simulations using
the estimated parameters and the observed sequences of patients. Revenue per case is in thousands of real 2014 dollars.
A treatment is a success if the patient can be discharged home and does not need assisted care. Young physicians are
those with no more than 5 years of experience in the data. Teaching-hospital physicians are those working primarily
(measured by caseload) at a teaching hospital. If a physician works at multiple hospitals, the one with the largest share
of the physician’s cases is used.
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Figure 10: Counterfactual experiment: choice probabilities under uniform payments for clipping
and coiling
Notes: The Data bars plot the observed choice probabilities by physician groups. The Model bars plot the simulated
probabilities, assuming uniformpayments between clipping and coiling, conditional on patient types and hospitals. Clip
stands for surgical clipping; coil stands for endovascular coiling; obs stands for watchful observation, i.e. no intervention.
Young physicians are those with no more than 5 years of experience in the data. Teaching-hospital physicians are those
working primarily (measured by caseload) at a teaching hospital. If a physician works at multiple hospitals, the one
with the largest share of the physician’s cases is used.
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Figure 11: Counterfactual experiment: patient outcomes under uniform payments for clipping and
coiling
Notes: The Data bars plot the observed patient outcomes by physician groups. The Model bars plot the simulated
outcomes, assuming uniform payments between clipping and coiling, conditional on patient types and hospitals. A
treatment is a success if the patient can be discharged home and does not need assisted care. Clip stands for surgical
clipping; coil stands for endovascular coiling; obs stands for watchful observation, i.e. no intervention. Young physicians
are those with nomore than 5 years of experience in the data. Teaching-hospital physicians are those working primarily
(measured by caseload) at a teaching hospital. If a physician works at multiple hospitals, the one with the largest share
of the physician’s cases is used.
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ficiaries at participating hospitals, and they hope to expand it to all physician providers in 2018.

The VM program adjusts the payments on a claim basis for services in the Physician Fee Schedule

(PFS). The maximum reward for good patient outcomes is 2% of the baseline fee, and the maxi-

mum punishment for adverse outcomes is also 2%. Hence the value at risk for physicians amounts

to 4% of the baseline fee.

I explore the impacts of VM-style payment reforms on physician choices and patient outcomes

in the context of learning. I assume a simplified payment schedule that pays physicians 102% of

the prevailing revenue for a successful treatment and 98% otherwise. Table 18 summarizes the

physicians’ responses.

Choice probability Success Revenue/case
Pr(clip) Pr(coil) Pr(obs) rates ($1,000)

Overall
Data 0.303 0.409 0.288 0.544 114.25
Model 0.478 0.349 0.173 0.526 159.24

By physician subgroups
Experienced physicians at non-teaching hospitals
Data 0.307 0.341 0.353 0.528 87.96
Model 0.571 0.146 0.283 0.511 130.90
Experienced physicians at teaching hospitals
Data 0.293 0.431 0.277 0.557 119.00
Model 0.417 0.484 0.100 0.515 180.70
Young physicians at non-teaching hospitals
Data 0.334 0.460 0.206 0.559 131.16
Model 0.410 0.500 0.090 0.562 161.52
Young physicians at teaching hospitals
Data 0.242 0.498 0.260 0.541 165.58
Model 0.427 0.448 0.124 0.531 212.56

Table 18: Counterfactual experiment: outcome-contingent payments
Notes: TheModel rows report the simulated choice probabilities and treatment success rates, assuming outcome-based
payments: physicians receive 102% or 98% of the prevailing revenue when the outcome is a success or a failure, re-
spectively. The results are based on 1,000 simulations using the estimated parameters and the observed sequences of
patients. Revenue per case is thousand real 2014 dollars. A treatment is a success if the patient can be discharged
home and does not need assisted care. Clip stands for surgical clipping; coil stands for endovascular coiling; obs stands
for watchful observation, i.e. no intervention. Young physicians are those with no more than 5 years of experience in
the data. Teaching-hospital physicians are those working primarily (measured by caseload) at a teaching hospital. If a
physician works at multiple hospitals, the one with the largest share of the physician’s cases is used.

On average, physicians intervene more often under the outcome-based payments. In particu-

lar, they tend to choose more clipping but less coiling. The resulting patient outcome, however,

is inferior on average. The change seems counterintuitive, but it actually highlights the classic ex-

ploitation vs. exploration tradeoff in learning. With payoffs being higher for a success and lower for
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a failure, physicians would be induced to lean toward the treatment that maximizes current-period

outcome. But on the other hand, the outcome-based payments put more emphasis on the future

values of learning, which could encourage more experimentation. The overall effects are hetero-

geneous across physicians and depend on the relative magnitudes of the two opposing forces.

The remainder of Table 18 reflects the heterogeneity across physician groups. The effect on

future values of learning dominates for physicians who are experienced and working at teaching

hospitals and for those who are young and working at non-teaching hospitals. These two groups

of physicians would adopt more coiling, while the other two groups would reduce coiling take-up

under the outcome-based payment schedule.

Figures 12 and 13 summarize the responses in treatment choices and patient outcomes by physi-

cian groups and by the patients’ observed treatment in the data. The two groups of physicians

(experienced at teaching hospitals, young at non-teaching hospitals) for whom the future effect

dominates tend to choose coiling more often. As for patient outcomes, those who are observed to

receive coiling would get worse outcomes under VM-style payments. On the contrary, those who

are observed to receive clipping would get moderately better outcomes. This differential response

corroborates the above-noted explanation further. The value of learning about clipping, the tra-

ditional treatment, is generally lower. Therefore it is more likely that the effect of outcome-based

payments on future values is dominated by that on the current-period outcome.

7 Concluding Remarks

In this paper, I use the treatment of brain aneurysms as an example to study how two kinds of

learning jointly shape physicians’ treatment choices: Bayesian learning that updates physician be-

liefs regarding treatment-patient type match value and learning by doing that improves treatment-

specific surgical skills and reduces the future costs of delivering the same treatment. Using the

detailed New York Statewide Inpatient Database (SID) from 2003 to 2014, I retrieve the uninter-

rupted history of physicians’ treatments and outcomes. I then use the novel dataset to uncover

empirical patterns that show that both kinds of physician learning are present, and that physicians

are forward-looking in their treatment choices.

I develop a dynamic structural model in light of the reduced-form evidence. Themodel features

forward-looking physicians who make treatment choices for heterogeneous patients. My model

solution extends the Gittins index policy Gittins (1979) to accommodate a high-dimensional state
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Figure 12: Counterfactual experiment: choice probabilities under outcome-contingent payments
Notes: The Data bars plot the observed choice probabilities by physician groups. The Model bars plot the simulated
probabilities, assuming outcome-based payments: physicians receive 102% or 98% of the prevailing revenue depending
on whether the treatment is a success or a failure, respectively.
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Figure 13: Counterfactual experiment: patient outcomes under outcome-contingent payments
Notes: The Data bars plot the observed treatment success rates by physician groups. TheModel bars plot the simulated
success rates assuming outcome-based payments: physicians receive 102% or 98% of the prevailing revenue when the
outcome is a success or a failure, respectively. The results are based on 1,000 simulations using the estimated parameters
and the observed sequences of patients. Revenue per case is thousand real 2014 dollars. A treatment is a success if
the patient can be discharged home and does not need assisted care. Clip stands for surgical clipping; coil stands for
endovascular coiling; obs stands for watchful observation, i.e. no intervention. Young physicians are those with nomore
than 5 years of experience in the data. Teaching-hospital physicians are thoseworking primarily (measured by caseload)
at a teaching hospital. If a physician works at multiple hospitals, the one with the largest share of the physician’s cases
is used.
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space and spillover effects between the two kinds of learning. I estimate the model on the SID

data and achieve good model fit with the observed choice dynamics. I further disentangle the

effects of Bayesian learning and learning by doing: the former dominates the decisions to utilize

clipping, the old treatment; the latter dominates the decisions to adopt coiling, the new treatment.

Relative magnitudes of the two kinds of learning also vary across physicians. Bayesian learning

has more influence on the treatment choices of physicians at non-teaching hospitals, whose prior

beliefs about coiling are less optimistic. Learning by doing, on the other hand, is more influential

on the decisions of younger physicians, who have lower stocks of surgical skills.

I use the model estimates to compare the observed choices by forward-looking physicians with

counterfactual ones by myopic physicians. I find that forward-looking physicians deviate substan-

tially from the myopic best choices, especially on unhealthy patients. I also show that the learning

effects are substantial and explain 20% of total variation in the physicians’ choice of care, or about

one-third of the variation coming from the supply side. Finally, I assess the impacts of alternative

payment schedules such as the CMS Value Modifier program that links payments with outcomes.

The heterogeneous responses in physician choices highlight the key tradeoff in learning, namely

exploiting high flow payoffs versus experimenting with lesser-known options.

This paper sheds light on how belief updating and skill accumulation jointly shape medical

decision-making. Moreover, I demonstrate how forward-induction approaches such as the Gittins

index can help with the estimation of otherwise high-dimensional models. I also provide new

empirical evidence and identify structural learning parameters with the rich variation in the SID

data.

My focus in this paper is on individual physicianswhomake decisions independently and learn

from their own experiences. To this end, the treatment of brain aneurysms is particularly suitable

because of the scarcity of neurosurgeons and the lack of industry guidelines. Collective or cen-

tralized decision-making could be more relevant, however, if a hospital has multiple physicians

specializing in the same condition. The hospital may have the dual goal of optimizing patient

outcomes and the portfolio of its physicians’ skills. This is an interesting dimension to explore in

future work.
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A Proof of Proposition 1

A.1 Overview of the proof

In this section, I present the complete proof of Proposition 1. First, recall the definition of the

Gittins index (same as Definition 1 and Proposition 1 in the main text):

Definition 1. For arm d in state (θd, ed, k, rd), construct a two-armed bandit process by adding an auxiliary

arm with lump-sum retirement paymentM . The Gittins index for arm d,Mdk(θd, ed, rd), is the infimum

of all theM values that the physician is willing to take and retire. That is

Mdk(θd, ed, rd) := inf
M
{M : φd(θd, ed, k, rd,M) = M} (A1)

Proposition 1. Under Assumption 1, the modified Gittins index policy that always selects the treatment

option with the highestMdk(θd, ed, rd) is optimal for the physician’s problem (10):

max
{dt}t=0,1,...

E[
∞∑
t=0

βtiu
d
t (θ

d
t , e

d
t , kt, r

dk
t ) | θ0, e0, k0, rdk0 ] (A2)

I follow the approach of Whittle (1982) and prove the proposition in 4 steps: (1) I start by defin-

ing the one-step forward operator, Ld, and show that the optimal payoff from A2, G, must also

be optimal for the sequential one-step forward problem; (2) I then examine the optimal payoff of

the modified MAB, Φ, and establish the properties Φ must satisfy; (3) I construct a candidate pay-

off, Φ̂, whose value is determined jointly by indexes of all arms given the realized patient type k,

{Mdk}d∈D; (4) finally, I show that Φ̂ is indeed the optimal payoff, Φ, and the optimality is achieved

by an index policy that always prescribes the arm with the highestMdk. Hence I have shown that

the Gittins index policy is optimal for the physician’s problem.

A.2 Step 1: Optimal payoff and the one-step forward problem

Let constants A and B be the uniform lower and upper bounds of total discounted payoffs,

respectively:

−∞ < A(1− β) ≤ udt (θdt , edt , kt, rdkt ) ≤ B(1− β) <∞ (A3)

Denote themaximum expected total discounted payoff function for the physician’s problem (10)
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by G

G(θ0, e0, k0, r0) = max
π

Eπ[
∞∑
t=1

βtut | θ0, e0, k0, r0] (A4)

where π is a policy and (θ0, e0, k0) are the initial states. Then Gmust satisfy

G = max
d
LdG (A5)

with the one-step operator Ld defined as

LdG(θ, e, k, r) = ud(θd, ed, k, rdk) + βE[G(θ′, e′, k′, r′) | d,θ, e, k, r] (A6)

The one-step transition of states is such that θ′ and θ only differs in θdk; e′ and e only differs in that

ed′ = ed + 1; k′ is a new draw from the same distribution as kt; and r′ is expected by the physician

to remain unchanged.

A.3 Step 2: Modified MAB with an auxiliary arm for retirement

Now consider a modified version of the physician’s problem with the added option of taking a

given lump-sum paymentM and retiring. Define the maximum expected total discounted payoff

function for this modified problem by Φ. Then we have

Φ(θ, e, k, r,M) = max

{
M,max

d
LdΦ(θ, e, k, r)

}
(A7)

Let τ be the period in which the retirement option is chosen, then

Φ = Vc +ME[βτ | θ, e, k, r] (A8)

whereVc is the total discounted payoff from running theMABbefore retirement. Note that τ = +∞

is allowed, in which case retirement is never chosen and E[βτ ] = 0.

Similarly, define a modified two-armed bandit process with one arm being option d and the

other being retirement with lump-sum paymentM . Let φd be the maximal expected payoff func-
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tion, which must solve

φd = max
{
M,Ldφd

}
(A9)

= max
{
M,ud(θd, ed, k, rdk) + βE[φ(θd′, ed′, k′, r′) | d,θ, e, k, r]

}
(A10)

The following properties of Φ and φd will become useful in the proof of the optimality of an

index policy.

Lemma A1. Φ(θ, e, k,M) is non-decreasing, convex inM . And

Φ(θ, e, k, r,M) =


G(θ, e, k, r) forM ≤ A

M forM ≥ B
(A11)

Proof. That Φ is non-decreasing in M and relationship (A11) are obvious: increasing the pay-

ment for retirement cannot make the physician worse off; the retirement option is disregarded

whenM is smaller than theminimum total discounted payoffA, and it is taken immediately (τ = 0)

when M exceeds the maximal total discounted payoff B. The convexity of Φ in M follows from

(A11) and (A8). �

A.4 Step 3: A candidate for Φ

Define Φ̂ as a candidate for the optimal expected payoff function

Φ̂(θ, e, k, r,M) = B −
∫ B

M

∏
d

∂φd(θ
d, ed, k, rdk,m)

∂m
dm (A12)

Integration by parts yields (suppressing arguments for Φ̂)

Φ̂ = φd(θd, ed, k, rdk,M)P d(θ, e, k, r,M) +

∫ ∞
M

φd(θd, ed, k, rdk,m)dmP d(θ, e, k, r,m) (A13)

where P d is defined as

P d(θ, e, k, r,M) :=
∏
d′ 6=d

∂φd′(θ
d′ , ed

′
, k, rd

′k,M)

∂M
(A14)
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Lemma A2. P d(θ, e, k, r,M) is non-negative and non-decreasing inM ; and is equal to 1 when

M > max
d′ 6=d

Md′k (A15)

Proof. By Lemma A1, φd is also non-decreasing and convex in M . Hence ∂φd/∂M is non-

negative and non-decreasing inM . It also follows from Lemma A1 that φd = M whenM ≥ Mdk,

whereMdk is arm d’s Gittins index in Definition (1). Thus P d = 1 whenM is no smaller than the

index for any arm d′ 6= d. �

Before proving the optimality of Φ̂, note that Φ̂ is constructed based on the following observa-

tion:

∂Φ(θ, e, k, r,M)

∂M
= E[βτ | θ, e, k, r] =

∏
d′

E[βτd′ | θd′ , ed′ , k, rd′k] =
∏
d′

∂φd′(θ
d′ , ed

′
, k, rd

′k,M)

∂M

(A16)

where the first equality follows (A8) and the second equality from the independence across arms.26

A.5 Step 4: Optimality of Φ̂ and the policy that achieves the optimality

To show that Φ̂ is indeed the optimal payoff under a Gittins index policy, it suffices to show that

it solves Equation (A7) by always choosing the arm with the largest index,Mdk.

I begin by showing the first part of (A7), i.e. Φ̂ ≥M :

Lemma A3. Φ̂ ≥M , with equality when

M > max
d′∈D

Md′k (A17)

Proof. Suppress the state variables (θ, e, k) for simplicity of exposition in this proof. Recall that

∂φ/∂M is at most 1, hence

Φ̂(M) = B −
∫ B

M

∏
d′

∂φd′(m)

∂m
dm (A18)

≥ B −
∫ B

M
1 dm (A19)

= M (A20)

And the weak inequality (A20) becomes equality only when ∂φd′(m)/∂m = 1 for all d′ ∈ D. This

26Whittle (1980) observed that P d (and ∂φd/∂m) is essentially a distribution function.
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coincides with condition (A17) by definition of the Gittins indexMd′ . �

Now I show that Φ̂ also satisfies the second half of (A7):

Lemma A4. Φ̂ ≥ LdΦ̂, with equality when

Mdk = max
d′∈D

Md′k ≥M (A21)

Proof. First consider the effect of applying the one-step operator, Ld on P d(θ, e, k,M):

LdP d(θ, e, k, r,M) := Ld

∏
d′ 6=d

∂φd′(θ
d′ , ed

′
, k, rd

′k,M)

∂M

 (A22)

= Ld

∏
d′ 6=d

E[βτd′ | θd′ , ed′ , k, rd′k]

 (A23)

= Ld

∏
d′ 6=d

E[βτd′ | θd′ , ed′ , rd′k]

 (A24)

=
∏
d′ 6=d

E[βτd′ | θd′ , ed′ , rd′k] (A25)

=
∏
d′ 6=d

E[βτd′ | θd′ , ed′ , k, rd′k] (A26)

= P d(θ, e, k, r,M) (A27)

Equality (A24) holds by Assumption (1), which abstracts away potentially persistent effects of the

current patient type k on the duration of trial, τd′ . And Equality (A26) holds because the state

variables (θd
′
, ed
′
, ) remain frozen when the one-step operator Ld chooses to operate arm d 6= d′.

Now apply Ld to Φ̂ and we get

LdΦ̂ = Ldφd(θd, ed, k, r,M)P d(θ, e, k, r,M) +

∫ ∞
M

Ldφd(θd, ed, k, r,m)dmP d(θ, e, r, k,m) (A28)

Suppressing the state variables, we get the following relationship between Φ̂ and LdΦ̂:

Φ̂− LdΦ̂ =
[
φd(M)− Ldφd(M)

]
P d(M) +

∫ ∞
M

[
φd(m)− Ldφd(m)

]
dmP d(m) (A29)

Because φ solves the problem (A10), we have
[
φd(M)− Ldφd(M)

]
≥ 0. Moreover, P d is non-

negative. Hence Φ̂ ≥ LdΦ̂.

Moreover, we know that φd(M) = Ldφd(M) whenM ≤Mdk. And that P d is non-decreasing in
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M , and is equal to 1 whenM > max
d′ 6=d

Md′k. These two restrictions onM jointly implies that when

Mdk = max
d′ 6=d

Md′k ≥M , we have Φ̂ = LdΦ̂. �

It is now easy to prove Proposition 1. Lemmas A3 and A4 show that the candidate solution Φ̂

indeed solves (A10), Φ = max
{
M,maxd L

dΦ
}
. Furthermore, the conditions onM in Lemmas A3

and A4 prescribe a policy for achieving the maximal expected payoff, which is to always choose d

for whichMdk = max
d′ 6=d

Md′k ≥M , i.e. the arm with the highest Gittins index.

B Numerical Approximation of the Modified Gittins index

B.1 Overview of the method

In this section, I derive the approximate Gittins index (13) and its full specification. I adapt the

approximation by Brezzi and Lai (2002), noting that their work is based on Gittins’ formulation of

the MAB process, which differs from the formulation I use in the paper following Whittle (1982).

The two approaches differ in the specification of the auxiliary arm: Gittins assumes the agent

receives a fixed rate v in each period she chooses the auxiliary arm, and that she still has the option

of choosing the original arm, d; Whittle assumes that the agent receives a one-time, lump-sum

retirement pay M when she choses the auxiliary arm, and that she can never operate the two-

armed bandit machine again. They use v andM as indexes, respectively.

Whittle (1982) compared the two approaches, noting that Gittins’ formulation gives rise to an

intuitive optimal stopping argument: between the auxiliary arm that pays a fixed rate v and a

risky arm, d, if the agent chooses former in some period, it must be that she values v more than

the combined value of d’s flow and continuation payoff. Further, the states of dwill remain frozen

when it is inactive; the agent will then keep choosing the same v in the next period, and for that

matter all subsequent periods, hence the optimal stopping rule. Whittle observes that Gittins’

formulation of the auxiliary arm elucidates the economic intuition of the index, but makes the

proof of optimality hard to follow (Whittle, 1980). Whittle’s own formulation of the auxiliary arm

does not employ an optimal stopping rule–choosing the arm directly stops all future decision-

making, but renders a simple proof.

Beyond these methodological distinctions, indexes under the two approaches do not differ fun-

damentally, and they are linked by the following relationship:

M =
v

1− β
(A30)
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where β is the discount factor (Whittle, 1982).

I draw on the approximation of the Gittins index by Brezzi and Lai (2002) and adapt it to my

model in three ways: First, I convert Brezzi and Lai’s approximation (derived under Gittins’ for-

mulation) to one that suits the Whittle’s formulation that I use. Second, I handle the uncertain

starting states (in period (t + 1)) of the index in my model. Finally, I complete the approximated

Gittins index, which only accounts for Bayesian learning, by adding the learning-by-doing effects

and the financial incentives.

B.2 The flow utility

The complete index for my model starts with the flow utility

IndexMdk
t , part 1: udt (θ

d
t , e

d
t , kt, r

dk
t ) = µdkt + αrdkt − c(edt ) (A31)

I separate the flow utility from the remainder of the problem for two reasons: first, the effect

of the current patient’s type is assumed to be transitory, thus only showing up in the flow utility;

second, as discussed in the paper, the physician virtually has one “average” type of patient in future

periods from an ex ante perspective. The second point implies that from period (t + 1) onwards,

the value of each arm can be summarized in a standard Gittins index that no longer depends on

patient types.

B.3 Step 1: approximated Gittins index for the standard MAB

From period (t+ 1) onward, it is as if the physician expects to have only one “average” type of

patient. Suppose the physician’s posterior belief about d’s match value for the average type, after

observing period t outcomes, has mean and variance µdt+1 and νdt+1, respectively. Then following

Brezzi and Lai (2002), the closed-form approximation to the Gittins index is

IndexMdk
t , part 2 (conditional on ydt ): M̃(θdt+1, e

d
t+1) = (1− β)−1

[
µdt+1 +

√
νdt+1ψ(

νdt+1

− ln(β)σ2µ,d
)

]
(A32)
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where the (1− β) in the denominator comes from using (A30) to convert the index under Gittins’

formulation to one under Whittle’s. σ2µ,d = µdt+1(1− µdt+1) and ψ is the single-argument function:

ψ(s) =



√
s/2, s ≤ 0.2

0.49− 0.11s−0.5, 0.2 < s ≤ 1

0.63− 0.26s−0.5, 1 < s ≤ 5

0.77− 0.58s−0.5, 5 < s ≤ 15√
2 ln s− ln(ln s)− ln(16π), s > 15

(A33)

The posterior mean and variance, µdt+1 and νdt+1, are intuitive to get. Suppose the physician has

observed the period t outcome and updated her belief about d’s match value with each type k.27

Denote the posterior mean and variance as µdkt+1 and νdkt+1, respectively. The physician simply uses

the weighted average of type-specific posterior means and variances to calculate µdt+1 and νdt+1:

µdt+1 =
K∑
k=1

λkµ
dk
t+1, µdkt+1 =

adkt+1

adkt+1 + bdkt+1

(A34)

νdt+1 =
K∑
k=1

λ2kν
dk
t+1, νdkt+1 =

adkt+1b
dk
t+1

(adkt+1 + bdkt+1)
2(adkt+1 + bdkt+1 + 1)

(A35)

where λk is the type-specific patient arrival rate; adkt+1 and bdkt+1 are the number of previous successes

and failures for the (d, k) combination up to, but not including (t+ 1).

B.4 Step 2: taking expectation over the period-t outcome realization

The posterior means and variances, µdkt+1 and νdkt+1, are the results of physician belief updating

after she observes period-t outcomes. The outcome is not yet known to the physician when she is

to make the period-t choice. Accordingly, she takes expectation over the two possible realizations

of ydkt , with the probability of ydkt = 1 being µdkt :

IndexMdk
t , part 2 (expectation over ydt ): E

[
M̃(θdt+1, e

d
t+1)

]
(A36)

27The beliefs regarding d’s match value for types that didn’t arrive in period t remain the same at the beginning of
period (t+ 1) as at the beginning of period t.
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B.5 Step 3: adjusting for learning-by-doing effects and financial incentives

So far the index has not captured the continuation value from learning by doing and future

financial incentives. Suppose the partial index M̃ prescribes a stopping time τ∗. Then one can sum

the financial incentives, net of the cost of furnishing treatment, as

IndexMdk
t , part 3:

∞∑
τ=0

βτ
(
αE(rdt+1+τ )− c(edt+1+τ )

)
(A37)

where E(rdt+1+τ ) =
∑K

k=1 λkr
dk
t+1+τ , is the expected revenue for the “average” type.

B.6 Complete specification

Assembling the parts derived above, I get the following complete specification of the Gittins

index, adapted from Brezzi and Lai (2002), to accommodate two types of learning in this paper:

Mdk(θdt , e
d
t , r

d
t ) = udt (θ

d
t , e

d
t , kt, r

dk
t ) (A38)

+βE

[
M̃(θdt+1, e

d
t+1) +

τ∗∑
τ=0

βτ
(
αE(rdt+1+τ )− c(edt+1+τ )

) ∣∣∣θdt , edt , kt
]

I rearrange the above to get

Mdk(θdt , e
d
t , r

d
t ) (A39)

= µdkt + αrdkt − c(edt )

+
αβ

1− β

K∑
k=1

λkr
dk
t −

β exp(−αc2)
1− β exp(−αc2)

c(edt )

+
β

1− β

[
µdkt ×

(
µd⊕t+1 +

√
νd⊕t+1ψ

⊕
)

+ (1− µdkt )×
(
µd	t+1 +

√
νd	t+1ψ

	
)]

µd⊕t+1 is the average posterior mean after observing ydt = 1, which happens with probability µdkt as

perceived by the physician; and µd	t+1 is that after observing ydt = 0, which happens with perceived

probability (1− µdkt ). νd⊕t+1, ν
d	
t+1, ψ

d⊕
t+1, and ψ

d	
t+1 are defined similarly.
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C Supplemental Figures

Panel A. Surgical clipping

Panel B. Endovascular coiling

Figure A1: Illustration of clipping and coiling for brain aneurysms
Source: Brisman JL, Song JK, Newell DW. Cerebral aneurysms. NEJM 2006; 355:928-39.
Notes: The top figure illustrates the treatment of brain aneurysms with surgical clipping. With craniotomy, the neuro-
surgeon places the small clip across the neck of the aneurysm to stop the artery blood from flowing into the aneurysm.
The bottom figure illustrates the treatment with endovascular coiling. The neurosurgeon inserts a fine platinum coiling
into the groin artery and navigates the blood vessel with the help of a catheter. Once the coil reaches the bottom of the
aneurysm, it is wound up into a ball that fills the aneurysm, thereby reducing the inflow of blood.
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Figure A2: Counterfactual experiment: choice probabilities when physicians maximize flow pa-
tient outcome (by physician characteristics)
Notes: The Data bars plot the observed choice probabilities. TheModel bars plot the simulated choice probabilities and
patient outcomes, assuming physicians maximize current-period expected patient outcomes (plus a treatment-specific,
Type-I extreme value error). Clip stands for surgical clipping; coil stands for endovascular coiling; obs stands for watch-
ful observation, i.e. no intervention. Young physicians are those with no more than 5 years of experience in the data.
Teaching-hospital physicians are those working primarily (measured by caseload) at a teaching hospital. If a physician
works at multiple hospitals, the one with the largest share of the physician’s cases is used.
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Figure A3: Counterfactual experiment: patient outcomes when physicians maximize flow patient
outcome (by physician characteristics)
Notes: The Data bars plot the observed patient outcomes, i.e. the treatment success rates. The Model bars plot the
simulated success rates, assuming physicians maximize current-period expected patient outcomes (plus a treatment-
specific, Type-I extreme value error). A treatment is a success if the patient can be discharged home and does not need
assisted care. Clip stands for surgical clipping; coil stands for endovascular coiling; obs stands for watchful observation,
i.e. no intervention. Young physicians are those with no more than 5 years of experience in the data. Teaching-hospital
physicians are those working primarily (measured by caseload) at a teaching hospital. If a physician works at multiple
hospitals, the one with the largest share of the physician’s cases is used.
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FigureA4: Counterfactual experiment: choice probabilitieswhen physiciansmaximize flowpayoff
(by physician characteristics)
Notes: The Data bars plot the observed choice probabilities. The Model bars plot the simulated choice probabilities,
assuming physicians maximize their own flow payoffs (plus a treatment-specific, Type-I extreme value error). Clip
stands for surgical clipping; coil stands for endovascular coiling; obs stands for watchful observation, i.e. no intervention.
Young physicians are those with no more than 5 years of experience in the data. Teaching-hospital physicians are those
working primarily (measured by caseload) at a teaching hospital. If a physician works at multiple hospitals, the one
with the largest share of the physician’s cases is used.
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Figure A5: Counterfactual experiment: patient outcomes when physicians maximize flow payoff
(by physician characteristics)
Notes: TheData bars plot the observed treatment success rates. TheModel bars plot the simulated success rates, assum-
ing physicians maximize their own flow payoffs (plus a treatment-specific, Type-I extreme value error). A treatment is
a success if the patient can be discharged home and does not need assisted care. Clip stands for surgical clipping; coil
stands for endovascular coiling; obs stands for watchful observation, i.e. no intervention. Young physicians are those
with no more than 5 years of experience in the data. Teaching-hospital physicians are those working primarily (mea-
sured by caseload) at a teaching hospital. If a physician works at multiple hospitals, the one with the largest share of
the physician’s cases is used.
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