
Technological Advance in Cholesterol Medication

Meets Physician Learning: A Non-Parametric

Bounding Approach

Vincenzo Atella, Federico Belotti,
Jay Bhattacharya, Domenico Depalo∗

May 29, 2018

Abstract

In this paper we investigate the relation between technological ad-
vance, in the form of an information shock, and changes in physicians
and patient behavior. We focus on the case of statins, a medication used
to manage high cholesterol levels, where newly produced evidence has al-
tered the scientific consensus regarding side effect profiles. Early common
wisdom held that statins may cause liver damage and therefore patients
should be regularly tested for changes in liver enzyme levels. In 2010
GREACE, a large and influential randomized controlled trial, suggested
instead that the medication could be continued despite elevated liver en-
zymes, and that patients need not be tested regularly for liver damage.
We exploit this major informational technological shock to test how physi-
cians prescription and testing behavior and patients adherence to therapy
changed in response. We test our model using a unique dataset representa-
tive of the Italian population, that links patients to doctors over the period
2003-2014. We account for the possible non-random sorting of patients
into treatment by exploiting an instrument which is assigned effectively
at random. We employ a non-parametric bounding approach that takes
into account the selection mechanism (unlike ordinary least squares) and
permits conclusions about the entire population (unlike standard instru-
mental variables estimation). Our results show that doctors responded
promptly to this technological shock.
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1 Introduction

Medical practice should be based on developments in medical science. Such

developments may include new drug products, new knowledge about physiolog-

ical mechanisms, and new information about existing technologies. Important

new technological developments should in principle lead to changes in optimal

medical practice by physicians. This is especially true if the new evidence con-

vincingly contradicts prior common medical wisdom. Patients behavior such as

adherence to prescribed therapy may also change in response to new technologi-

cal developments. This may happen either because patients themselves become

aware of the new evidence, or because changes in prescribed therapy induced

by the technological development may improve clinical outcomes or make side

effects less likely or less severe. In short, important new technologies and new

medical information should disrupt medical practice. In this paper, we analyze

the effects of an information shock that altered the scientific consensus on the

side effect profile associated with statin medication, an important pharmaceu-

tical product used to manage hypercholesterolemia.

Hypercholesterolemia is defined as high levels of cholesterol in the blood

stream. High levels of low density lipoprotein (LDL) cholesterol is of medi-

cal concern because patients with high LDL levels are more likely to develop

atherosclerosis and associated heart disease. Statin medications are among the

most commonly used pharmaceutical products both because the prevalence of

hypercholesterolemia is high, and because these medications have been shown

in randomized trials to be safe and effective way to reduce serum LDL levels

and reduce mortality. For instance, the 1994 Scandinavian Simvastatin Survival

Study (among the earliest large randomized trials of statin medications) found

that patients randomized to statins enjoyed a 35% reduction in LDL cholesterol

and a 30% reduction in mortality hazard relative to placebo controlled patients
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(Scandinavian Simvastatin Survival Study Group, 1994).

However, like every drug, statin medications can cause adverse side effects.

In the case of statins, an increase in blood levels of liver enzymes like alanine

aminotransferase (ALT) – which in some cases indicate liver damage – was his-

torically seen as the most common side effect. An early randomized study found

fifteen times higher rates of elevated liver enzymes among patients assigned to

high dose statins relative to placebo or low dose statins (Bradford et al., 1991).

Physicians viewed this evidence of side effects as salient; in studies of statin

initiation, physicians were found to be reluctant to prescribe statin therapy be-

cause of the risk of hepatotoxicity (Rzouq et al., 2010). A finding of elevated

liver function tests (LFTs) might lead a physician to recommend discontinuing

statin therapy, lowering statin doses, or changing the statin molecule prescribed

(Calderon et al., 2010). Given the concern about liver damage, until 2011 clini-

cal guidelines suggested that physicians who prescribe statins for their patients

should regularly test for changes in liver enzyme levels (McKenney et al., 2006;

Gillett and Norrell, 2011).

In fact, even in the early days of statin medications, there were non-randomized

studies that found that elevated liver function tests did not necessarily indicate

permanent liver damage. A finding of elevated liver enzymes was often readily

reversible (Mölgaard et al., 1991). Some observational evidence published in the

mid-2000s suggested that this fear of liver damage was overstated.

An early 2004 study concluded, on the basis of a literature review, that

routine liver function tests to help detect liver damage in patients on statins,

was not necessary given that most cases of elevated liver enzymes were transitory

(Sniderman, 2004). A series of observational studies of statin use among patients

with pre-existing liver disease found the drug to be safe and effective, with no

evidence of hepatotoxicity (Khorashadi et al., 2006; Segarra-Newnham et al.,
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2007; Lewis et al., 2007; Bhardwaj and Chalasani, 2007). Evidence from around

the world raised the idea that the link between statins, elevated liver enzyme

levels, and permanent liver damage was not well established. For instance,

a 2006 Italian study reviewed the evidence that statins cause liver damage,

and concluded that though the authors found some evidence for a relationship,

there was not enough to support a causal link (Conforti et al., 2006). An 2006

American expert panel of hepatologists concluded that statin use was largely

safe in terms of liver side effects (Cohen et al., 2006). However, given the

evidence from the early statin randomized controlled trials (RCTs), the general

consensus in the medical community was that statins had the potential to cause

this side effect (Bays, 2006; Clarke and Mills, 2006).

In late 2010, the GREACE study of statin medication use in a population

of Greek patients with abnormal liver tests was published in Lancet, a leading

medical journal (Athyros et al., 2010). The study showed that despite elevated

liver enzyme levels, patients randomized to statin medications actually experi-

enced lower rates of elevated liver enzymes relative to control patients, with a

better cardiovascular response. This study was striking because its results were

so unexpected given what most physicians believed about the effects of statins.

If patients with liver disease show improvements in liver function after statin

therapy is started, then the prior conventional wisdom that statins can cause

low grade liver damage in patients without liver disease is most likely incorrect.

This in turn means that a finding of elevated liver function tests in the context

of statin therapy should not be taken as evidence that the statin medication is

leading to liver damage. The GREACE results suggested that statin medica-

tions could be continued despite elevated liver enzymes, and hence that patients

on statins need not to be tested regularly with LFTs (Pastori et al., 2015).1

1The GRAECE study did not contradict a previous finding that in some rare cases, statins
can cause rhabdomyolosis, a serious condition involving muscle degradation that can lead to
extensive liver and kidney damage. This rare side effect cannot typically be prevented or

3



Ultimately, this reasoning led experts to reverse the recommendations in

previous guidelines. American practice guidelines were modified in 2014 to rec-

ommend that patients on statins did not need have their liver enzyme levels

checked regularly. They suggest instead that liver function tests are needed

only when statin therapy is initiated and when the statin dose or type of statin

prescribed is changed (Bays, 2006). Though the Italian guideline for order-

ing liver function tests in the context of statin therapy has not changed, the

GREACE study was widely known among Italian physicians.2

Our main aim with this study is to test how physician prescription and test-

ing behavior changed in response to changing evidence about the side effect

profiles of statin medication. This is important because, while there is much

evidence of new technology adoption by physicians, there is little evidence about

shocks in information about existing technology on physician behavior and pa-

tient outcomes. Given the history we recount above, we divide our data into

three distinct periods: (1) an early period when most physicians believed that

statins may cause liver damage, and hence regular liver function testing is neces-

sary; (2) a period where some observational studies suggested that statins might

not be the cause of liver function abnormalities in patients taking statins; and

(3) after the publication of the GREACE trial, which established that statins

may actually help patients with liver function abnormalities. A secondary aim

of this paper is to understand how patient adherence to therapy changed in

response to this changing evidence. Together, we aim to estimate how both

doctors and patients react to new information in a discrete setting.

To do this, we analyze data from a large longitudinal sample of Italian

patients who have been diagnosed with high cholesterol levels between 2004

and 2014. The dataset includes the identity of the primary care physician

detected early with regular liver function tests.
2Personal communication with Dr. Cortese, lipidologist at the University of Rome.
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who manages the patient’s statin prescription during this period. The data set

includes biometric information, such as the measured LDL cholesterol level, as

well as information on the identity and dose of statins prescribed at each time

point, and information about the ordering of lab tests such as liver function

tests.

To generate estimates that may be interpreted causally from this observa-

tional database, we employ recently developed econometric bounding methods

that permit us to explore the effects of progressively stronger assumptions (Man-

ski, 1990; Shaikh and Vytlacil, 2011). The bounding methods we employ – in

contrast to more traditional point estimators employed by randomized and ob-

servational studies alike – permit us to measure the range of treatment effects

that are consistent with observational data without the strong structural as-

sumptions that are necessary to guarantee point identification.

The rest of the paper is organized as follows. Section 2 presents our data

set. Section 3 illustrates a simple principal-agent theoretical model which helps

the understanding the economic insights behind our empirical results. Section 4

provides a brief description of the recent econometric literature on bounding

methods, and develops a small extension of these methods to continuous out-

comes that we employ in this paper. Section 5 presents our quantitative results,

and finally, in Section 6, we conclude providing some reflections on what our

results suggest about the role of randomized evidence in medicine.

2 Data and Summary Statistics

In this section, we describe our dataset and inclusion and exclusion criteria,

our measures of drug potency and patient adherence to therapy, and finally we

present some important summary statistics about our population.
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2.1 Italian Health Search Database

Our empirical analysis is based on data obtained from the Health Search Database

(HSD), a longitudinal observational database collected by the Italian College of

General Practitioners (SIMG) since 1998. The HSD contains patient level data

from computer-based patient records reported by General Practitioners (GPs)

throughout Italy. GP participation is on a voluntary basis, but nevertheless

GP represented are in fact representative of the National Health Service (NHS)

regional organization. The number of patients tracked in the HSD are in pro-

portion to the size of the Italian adult population within each region (Fabiani

et al., 2004).3

Patient data are linked through a unique anonymous identifier to drug pre-

scriptions, clinical events and diagnoses, hospital admissions, and causes of

death. Information available include prescription dispensing date and drug char-

acteristics (Anatomical Therapeutic Chemical or ATC code which indicates the

quantity and type of active ingredient and number of pills). Other observable

characteristics are discussed in Section 2.3. We limit our sample to patient

records collected between 2003 and 2014, inclusive, because prior to 2003 serum

cholesterol level data were not accurately recorded by all GPs.

We selected patients based on two main inclusion criteria: i) patients who re-

ceive a diagnosis of “pure hyper-cholesterolemia” (or familiar hyper-cholesterolemia)

and received at least one statin prescription between 2003 to 2012; and ii) pa-

tients born between 1925 and 1975, inclusive. This leads to a twelve year un-

balanced panel, with 11 years of follow-up for the cohort of patients who were

observed to be on statins in 2003 and only two years of follow-up for the 2012

cohort (that is, 2013 and 2014).

3Data have been collected routinely since 2000. More details on the representativeness of
the database can be found at https://www.healthsearch.it/ (Official website of the HSD
project).
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Since the initial sample consists of daily observations, after having con-

structed and transformed all variables used in the analysis, data have been

collapsed to obtain patient-quarter level observations. Our choice of the patient-

quarter as the unit of observation represents a compromise aimed at reducing

the number of observations with a zero in drug consumption, while permitting

relatively frequent changes in treatment and outcomes. The final sample is then

organized as a quarterly unbalanced panel with data from 2004 to 2014, which

consists of 112,331 patients (57,244 women and 46,493 men) for a total of

1,792,595 observations.

We do not exclude patients who initiated statin therapy prior to 2003 for

two reasons. First, the half life of statin molecules in humans depends on the

molecule, but in all cases we consider, is less than 20 hours (Plakogiannis and

Cohen, 2007). Half-life, here, is a physiological property of a molecule, and

indicates the amount of time it takes for half of the initial dose to be excreted

from the body through the kidney, or metabolized into a biologically inactive

form in the liver. Since the half-life of statin medications are so short, the effect

of the drug on cholesterol levels (and other outcomes) for someone who initiates

therapy before 2003 will depend primarily on the extent to which the patient

takes the statin during 2003 (and not on drug-taking behavior before then).

Second, including people who are already on therapy in 2003 may lead us to

underestimate the effect of statin medications on cholesterol levels. Someone

who has routinely taken statin medications for some time prior to the start of

our sample in 2003 is likely to have a low measured cholesterol level at the start

of the observation window. Continuing to take the statin medication through

2003 and after will not lead to a yet lower cholesterol level since the patient is

already at his or her steady-state cholesterol level.
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2.2 Measuring Drug Potency and Patient Adherence

We characterize the prescribed treatment regime according a univariate measure

called the equipotency score. This score relies on the physiological fact that some

molecules are more active than others in blocking cholesterol synthesis in the

liver. This measure also accounts for the fact that higher doses of a molecule

will have a more potent cholesterol synthesis blocking effect than lower doses.

Table 1 shows this conversion formula for the three statin molecules that we

analyze in this study (simvastatin, atorvastatin, and rosuvastatin). This table

follows the work of Maron et al. (2000).

According to this table, a one unit increase in equipotency for the same

molecule by doubling the dose. For example, going from 20 mg to 40mg of Sim-

vastatin increases the expected LDL cholesterol reduction by one equipotency

unit. Similarly, switching from 20mg of simvastatin to 20mg of atorvastatin or

to 10mg of rosuvastatin leads to an increase in the equipotency score because

rosuvastatin is more biologically active than atorvastatin, and atorvastatin is

more biologically active than simvastatin. Analogously, switching from 40mg of

simvastatin to 20mg of atorvastatin or 5mg of rosuvastatin maintains the same

equipotency level.

A key characteristic of interest is a patient’s adherence with the prescribed

treatment regimen. This is important because a drug cannot have an effect if a

patient decides not to take it. Given our data, there are various ways we could

measure patient adherence.4 In this study, we measure patient adherence to

care using the Mean Possession Ratio (MPR) (Cramer et al., 2008; Atella et al.,

4According to the International Society for Pharmacoeconomics and Outcomes Research
(ISPOR), medication compliance is commonly measured by adherence and persistence to
prescribed medical treatment. Adherence refers to the proportion of prescribed doses taken
in the prescribed time interval, while persistence refers to the continued use of a prescribed
therapy over time (Hughes et al., 2001).
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2017). This is defined as:

MPR =

(
Sum of days’ supply for all fills in quarter

Number of days in quarter

)
(1)

The MPR is thus the fraction of days over the course of a quarter covered

by all prescriptions for a drug. Low values of MPR are consistent with poor

adherence because a patient who is poorly adherent to therapy does not need a

refill prescription.

2.3 Other Observable characteristics

The Health Search Database also includes detailed information on patients clin-

ical histories. As a summary of the general individual health condition, we

construct the Charlson et al. (1987) index, a composite measure for the seri-

ousness of diseases that increases as health conditions become worse (i.e., the

assigned weight for AIDS is 6, the maximum, while for flu, it is 0, the min-

imum). We have also information about the presence of several chronic dis-

eases, such as diabetes, hypertension, congestive heart failure, atrial fibrillation,

vascular diseases, a history of cardiac bypass surgery or percutaneous coro-

nary intervention (PCI), ischemic heart disease, or other cardiac conditions,

which will be useful in order to control for comorbidities. In terms of diag-

nostic tests, we observe the number of patient specific prescribed tests by each

physician for alkaline phosphatase (ALP), aspartate aminotransferase (AST),

alanine aminotransferase (ALT), albumine and bilirubin. These tests represent

our key variables for the empirical analysis as they allow to estimate the ef-

fects of informational shocks on patient prescription and physician adherence

behaviours. Finally, a set of socio-demographic indicators includes age, sex, and

the geographical region.
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2.4 Summary Statistics

Table 2 reports the list of variables used in this analysis with their relative

descriptive statistics by gender status. The dependent variable is the yearly

rate of change in LDL-cholesterol at the patient level. As we can see in the

table, men and women reduce their LDL cholesterol by an average of 2.4% and

2.6% (respectively) per year that they are in our sample. However, the median

change is much lower, in the range of 1%. This marked difference between

mean and median change suggests a left skewed distribution, denoting also a

high heterogeneity in the effect of drug treatment on LDL cholesterol levels

across patients.

In our selected population, 55.0% are female. Mean age is around 69 years

for women and 65 for men. In accordance with the distribution of the Italian

population, the majority of the patients are concentrated in the north of Italy

(25.0% North-west, 20.0% North-east), with the center accounting for about

18.0%, and the south and the islands (Sardinia and Sicily) account for another

25%. The Initial level of cholesterol (that is, the first observed cholesterol level

for a patient in our sample) is higher for women (129 mmol/L) than for men

(118 mmol/L). The Charlson et al. (1987) index is similar by gender (about 1.0);

in about one third of the observations also diabetes is present and hypertensions

in two third of observations. Tests for aspartate aminotransferase and alanine

aminotransferase are the mode among the available test and are prescribed

about once per year (or 0.25 per quarter).

Table 3 reports the sum of all prescriptions recorded from 2004 to 2014 in our

dataset by sex, dosage and active ingredient. This table thus reflects specific GP

prescription patterns for simvastatin, atorvastatin, and rosuvastatin in Italy. As

is evident in the table, the most prescribed active ingredients/dose combinations

are Simvastatin 40mg, Atorvastatin 40mg and Rosuvastatin 20mg. Low dosage
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statins are hardly prescribed, with some exception for Rosuvastatin 10mg which

is actually at a high equipotency level.

3 Theoretical model

In this section, we propose a simple stylized model of physician beliefs about the

efficacy and side effects of cholesterol medication, their optimal recommended

choice of therapy given those beliefs, and finally patient adherence behavior in

response to those recommendations. Our main aim is to model the effects of

the information shock produced by the GREACE trial on physician beliefs to

guide our empirical work in later sections of the paper.

3.1 Physician Objectives

We model physician beliefs about the effects of statin medication along two

dimensions – the effect of statins on the cholesterol level (C) of a patient, and

the likelihood of potential side effects (such as liver damage or muscle damage)

produced by the medication. To simplify our theoretical modeling, physicians

only consider the equipotency dose (Q) in their prescription recommendation,

so the model elides the distinction between switching to a more potent molecule

and switching to a higher dose of the same molecule. We also assume that side

effects can be measured based with a single positive real valued number, SE,

where larger values indicate either more or worse side effects for the patient

(or both). For notational convenience, we leave implicit that all the beliefs and

objective functions we discuss are conditioned on observable characteristics, X.

Higher serum cholesterol levels and more side effects are bad outcomes that

physicians and patients want to minimize. To fit our discussion into the usual

maximization convention, we introduce the following notation: C = −C and

SE = −SE. We will recast our discussion of physician objectives and beliefs
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and patient objectives on C and SE rather than C and SE. Our focus in most of

this discussion is on the decisions of doctors to recommend therapy, so we start

with the physician utility function, with physicians serving as perfect agents for

patients. In Section 3.6, we relax this assumption, and permit patient behavior

to deviate from physician recommendations.

Physicians evaluate a combination of cholesterol and side effects outcomes

with a von-Neumann-Morgenstern utility function u(C,SE|Q), that is a nonde-

creasing function of both arguments. As a consequence, physician utility does

not decrease when a patient’s cholesterol or side effect levels decline:

∂u

∂C
≥ 0; and

∂u

∂SE
≥ 0. (2)

3.2 Physician Beliefs

From a physician’s (and patient’s) point of view, prescribing (and taking) statin

medications does not produce a certain outcome; rather, it produces a range of

possible outcomes which are uncertain at the time of prescription.5 This uncer-

tainty is a key feature of decision making by doctors, and so decisions will be

based on physician beliefs about the probability of cholesterol control and side

effects, for a given equipotency dose Q: F (c, se;Q) = P (C < c, SE < se|Q).

These beliefs, F incorporate the scientific evidence regarding the clinical effects

of statins as well as all other relevant information available to the doctor, such

as patient clinical characteristics, X. In particular, F can be interpreted as in-

corporating physician beliefs about patient adherence to recommended therapy.

We explore this issue further in Section 3.6.

Based on the randomized trial evidence we cite in Section 1, we assume that

5To keep the modeling effort simple and focused on the effect of physician beliefs about
treatment efficacy, we do not explicitly model the principal-agent nature of the relationship
between doctors and patients. In particular, we assume that doctors make recommendations
that are in line with patient preferences. We relax this assumption in Section 3.6, and the
paper more generally in that we permit patients to not adhere perfectly to prescribed therapy.
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physicians believe that a higher equipotency dose will increase the probability

of side effects and reduce the probability of a high cholesterol level (conditional

on a given side effect level). We formalize this assumption as:

F (SE|Q) < F (SE|Q′) ∀Q′ > Q (3)

F (C|SE,Q) > F (C|SE,Q′) ∀SE and Q′ > Q. (4)

Equations 3 and 4 imply that, in expectation, increases in equipotency dose

Q reduce cholesterol levels and increase side effects. Applying our notational

convention, we have ∀Q′ > Q:

E[C|Q] < E[C|Q′] (5)

E[SE|Q] > E[SE|Q′]. (6)

In what follows, we will mostly rely on equations 5 and 6, which we view as

mild restrictions, as they make a statement only about the first moment of the

(C, SE) distribution, that are based on RCT evidence.

3.3 Changing Evidence and Changing Beliefs

We next model how the release of the GREACE trial changed physician beliefs.

The GREACE trial evidence (primarily) revised the scientific view about the

effect of statins on liver function damage, rather than the effect of statins on

cholesterol. The latter effect was well established based on prior studies con-

ducted in the 1990s and earlier. The belief shock we are interested in, then, is

the change in the probability of a side effect, conditional on cholesterol level, for

any given quantity Q. Applying Bayes’ rule to the von-Neumann-Morgenstern
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utility function, for any belief, F , we have:

F (C,SE|Q) = F (SE|C,Q)F (C|Q). (7)

Here, for a given dose Q, F (C|Q) is the marginal c.d.f. implied by F on

serum cholesterol, and F (SE|C,Q) is the conditional c.d.f. implied by F for

the effect on side effects conditional on cholesterol level.

Let FPOST represent beliefs about the relationship between equipotency

dose, cholesterol levels, and side effect profiles that a well informed physician

will hold after the release of the GREACE trial. Correspondingly, let FPRE

represent the beliefs – based on the best available evidence in the literature at

the time – about these relationships at the beginning of our analysis period

(pre-GREACE).

We assume that the GREACE trial did not change beliefs about the effect

of statins on serum cholesterol levels, or:

FPOST (C|Q) = FPRE(C|Q). (8)

The main findings of GREACE were focused on the hepatic side effects of

statins, and in particular, that statins are less likely to cause hepatic side effects

than was previously believed. Formally, we assume that

FPOST (SE|C,Q) < FPRE(SE|C,Q),

which implies a first-order stochastic dominance relationship – FPOST dom-

inate FPRE . Combined with equation 8, this in turn implies that:

FPOST (C,SE|Q) < FPRE(C,SE|Q). (9)
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For the purposes of the empirical application the main upshot of this analysis

is as follows: a physician whose beliefs follow the literature before GREACE

expects that a given dose of statins would produce more side effects than a

physician whose beliefs are based on the post-GREACE consensus:

EPRE [SE|Q] < EPOST [SE|Q]. (10)

3.4 Physician Learning

So far, we have modeled the effect of a large one-time shock in beliefs, generated

by the GREACE trial. In fact, physicians update their beliefs all the time on

the basis of their experience treating patients. Here, we model this experience

as a process of learning by doing, in which the more patients that a physician

treats for hypercholesterolemia, the more experience the physician gets. The

idea is that the more patients that a physician treats, the closer that physician

beliefs will be to reality.

The natural question that arises in this context is whether the results of the

GREACE trial reflect the true relationship between statin dose (Q), cholesterol

levels, and side effects. Given the results of the GREACE trial, it should be

clear that the pre-existing literature did not reflect reality, or else the results of

the GREACE trial would have been quite different. In principle, though, the

GREACE study is not necessarily definitive, and future studies could further

refine scientific knowledge about these relationships.

For the purposes of this paper, we assume that GREACE has uncovered the

true relationship, F 0, between Q, C, and SE:

FPOST = F 0. (11)

We assume equation 11 because we believe – based on the current scientific
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consensus cited in our literature review – that the GREACE trial represents a

closer approximation to F 0 than did beliefs engendered by the evidence base

prior to GREACE (FPRE). Below, we discuss the consequences for our analysis

if in fact it is found that the GREACE results are not correct.

We model the physicians learning process as a function of the number of

patients treated. We adopt a Bayesian framework. Let N be the number of

patients that a physician has treated for this condition and let g(N) be a function

with the following properties:6

g(0) = 0

lim
N→∞

g(N) = 1

g′(N) > 0.

We model physician beliefs, F doc, as follows:

F doc(SE|C,Q) = g(N)F 0(SE|C,Q) + (1− g(N))FPRE(SE|C,Q). (12)

As the number of patients increases, physician beliefs come closer and closer

to the beliefs to the true effects of prescribing statins. Under assumption 11, this

implies that, even before GREACE trial was published, physicians who treated

a larger number of patients will behave as if statins do not produce liver side

effects. Thus, for those physicians, the publication of the GREACE trial will

have a smaller effect on their practice, with respect to physicians who treat fewer

6In principle, doctors update their beliefs based on the outcomes experienced by their
patients that adhere to the therapy recommended by the doctor. If a doctor has many
patients, most of whom ignore his advice, the doctor will not learn very much. One should
think of N as the “effective” number of patients seen by the doctor. Doctors who are better
at convincing their patients to adhere to therapy will then have a larger N , despite seeing
fewer patients than doctors who do a poor job communicating the importance of adherence.
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patients (and thus have beliefs closer to FPRE), who will change their practice

sharply after its publication. If physicians could observe the entire population,

their belief would coincide with F 0 (by the property of g(N)). This is not

possible, so we expect an effect for all the physicians. We test this implication

of our model in the empirical section of this paper.

We recognize that equation 11 is a strong assumption that simplifies our the-

oretical analysis considerably. This assumption could be wrong in two distinct

ways. First, it is possible that in truth, there are fewer side effects from statin

use than were measured in the GREACE trial, so that:

FPRE > FPOST > F 0.

In this case, the results of our theoretical analysis still hold with minimal modi-

fication, and the empirical results we report regarding the effect of practice size

on physician practice are conservative (that is, they may be an underestimate

of the true effect of the publication of the GREACE trial).

Alternatively, it is possible that future studies will conclude that the GREACE

study was incorrectly optimistic about the side effect profile of statins. In that

case, either

FPRE > F 0 > FPOST

or even,

F 0 > FPRE > FPOST .

In this second case, the interpretation of our result comparing doctors who

treat many patients against doctors who treat fewer patients would need to be

modified. If a future study finds that the GREACE was incorrect, and that

statins do cause hepatic side effects, then we would be forced to conclude that

physicians with large practices are currently behaving (and have been behaving
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even before GREACE) on the basis of false beliefs about the side effect profiles

of statins; they have learned nothing from their more extensive clinical practice.

They are not updating their beliefs in response to the evidence in front of them.

3.5 Optimal Prescribing

We assume that doctors’ utility follows the standard von-Neumann-Morgenstern

assumptions, with the doctor taking the expectation given their own belief, F doc,

about the efficacy and side effects of statins. Doctors choose Q in a way that

solves:

max
Q

U = Edoc[u(C,SE)] (13)

where the expectation is taken relative the doctor’s beliefs.

The optimal Q∗doc is chosen to maximize U with expectations set based on

F doc, which we assume is fixed near the optimum. The first order conditions

are given by:

dU

dQ
=
∂u

∂C

∂Edoc[C]

∂Q
+

∂u

∂SE

∂Edoc[SE]

∂Q
= 0. (14)

The first order condition for this problem balances the marginal decrease

in cholesterol level from a higher statin equipotency dose against the marginal

increase in side effects.

While this procedure identifies the optimal dose given the doctor’s expecta-

tions about the safety and efficacy of statin medication, if the doctor’s beliefs

do not match the truth (F doc 6= F 0), then the observed cholesterol levels and

side effect patterns will differ from what the doctor expects. In particular, the

doctor expects to find side effect levels equal to Edoc[SE;Q∗doc] in response to

prescribing the optimal dose, but in fact observes E0[SE;Q∗doc], where the latter
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expectation is taken with respect to F 0. Since F 0 >fsd F
PRE (see equations 9

and 11), we have:

E0[SE|Q∗doc] < Edoc[SE|Q∗doc]. (15)

In our empirical work, we indirectly test this implication of our model by

analyzing the frequency at which doctors order a test for liver damage. The

rationale beyond our approach is that as a doctor’s beliefs come closer to F 0, we

expect them to order fewer liver function tests since, as GREACE demonstrated,

statins are unlikely to have such side effects.

As a doctor’s beliefs tend toward FPOST – either because GREACE has

been released or a doctor sees a large number of patients – it is easy to see

that the optimal dose will increase, since FPOST < FPRE . That is, our model

predicts:

Q∗PRE < Q∗POST . (16)

Since the optimal equipotency dose is predicted to be higher in the post-

GREACE era (and for doctors whose beliefs are closer to F 0) we also predict

lower cholesterol levels in the treated population relative to the pre-GREACE

era.

This framework implies changes in physician prescribing on both the in-

tensive and extensive margins, on an individual patient basis. That is, the

GREACE shock both increased the optimal dose for patients already on a statin,

and expanded the set of patients who optimally should be on statin therapy. One

follow on implication from this observation is that patients selected for high does

therapy in the pre-GREACE era were presumably at high risk of heart disease

and other poor health outcomes caused by high serum cholesterol. This high
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risk justified the risk of liver side effects that physicians thought, pre-GREACE,

were a risk of statin therapy. The new information obtained about statins in the

post-2006 era provides a nice opportunity to test this patient selection story.

3.6 Patient Adherence

Up to now, our modeling effort has emphasized the role that doctors play in

prescribing therapy. Of course, patients play a crucial role in therapeutic deci-

sion making as well. If a patient decides against taking a medication, it does not

matter how wise or well-informed the physician’s prescription recommendation

was – the therapy will have no effect on the patient’s outcomes. So, to inter-

pret any correlation between statin dose and the response of cholesterol level,

it is crucial to consider how the recommended drug/dose combination, possible

side effects, patient adherence, and the physician response to possible lack of

adherence interact with one another.

Lack of adherence is particularly salient when considering treatment for a

condition like hypercholesterolemia. High cholesterol is an asymptomatic condi-

tion, and outside of doctor visits, where serum cholesterol levels are measured,

patients may not see any tangible, visible benefit from following the prescribed

therapy. By contrast, though rare, some of the side effects that are caused by

statin medication – such as muscle pain – may be painful. Patients may also

incorrectly attribute other symptoms they are experiencing to presribed statin,

even if the medical literature does not support such an attribution. In situations

like this, adherence to prescribed statin medications is likely to be low.

Lack of adherence arises because patients have their own preferences and

beliefs that physicians only imperfectly reflect. Though physicians in principle

have more knowledge about the evidence regarding the effects of medications,

patients certainly have their own ideas. If patients believed that their doctors
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serve as perfect agents on their behalf, with full information about the prefer-

ences of the patients taken into account, there would be no problem of patient

lack of adherence. In this sense, then, patient adherence to therapy depends on

how much patients trust the recommendations of their doctor.

If doctors do a poor job in communicating the necessity of their recommenda-

tions to their patients, their patients will be less likely to adhere to the doctors’

recommendations. Of course, some doctors are better than others in communi-

cating with their patients. This observation motivates our use of physician-level

adherence measures as an instrumental variable for adherence by particular pa-

tient (leaving out the patient’s own adherence, of course).

Patient adherence is not a fixed constant, and in fact may change in response

to changes in dose or prescribed medication. Our model predicts that physi-

cians, whose goal it is to lower patient serum cholesterol levels to a safe level, in

any given visit have two options to achieve this aim: switch the treatment to an

higher level of equipotency or leave the prescribed regime at the same level of

drug equivalence and place a great emphasis to the patient on the importance

of adherence.7 It is interesting to measure empirically, outside of randomized

settings (where adherence is always strongly encouraged and often tightly en-

forced), the relationship between equipotency dose and serum cholesterol.

When patient adherence is taken into account, our theory predicts that

changes in recommended equipotency level have a non-monotonic effect on

serum cholesterol levels. When a higher dose is recommended by a doctor who

is poor at communicating the importance of adherence, the patient might re-

spond by consuming less than the recommended amount, and perhaps even less

7Given the array of stain options available to physicians, it is possible for physicians to rec-
ommend a lower prescribed dose in milligrams, while simultaneously recommending a switch
to a more potent molecule. In net, this will increase may increase equipotency class, even
though the dose in milligrams decreases. To simplify the analysis, we focus on changes in
equipotency dose and do not separately analyze the effect of changes in milligram dose or
recommended molecule.
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than the previous effective dose. In that case, cholesterol might rise. A higher

recommended recommended dose by a doctor who is good at eliciting adherence

will, according to our theory, reduce the patient’s cholesterol level. Information

shocks like GREACE (which changed the expectations that doctors have about

side effects) can intensify the incentives that physicians have to increase the

dose or push to increased adherence. We examine these issues directly in the

empirical section of the paper.

4 Methods

In this section we review the methodologies that allow us to test the economic

model of Section 3. We first define our main parameter of interest – a population

average treatment effect – then discuss the various empirical strategies we use

to identify it.

4.1 Population Average Treatment Effect

We employ the standard model of potential outcomes, in which the outcome Y

(such as reduction of cholesterol) is observed either under treatment (Y1) and

non-treatment (Y0), but not both (Roy, 1951). In this notation, the subscript

on Y indicates treatment status (d ∈ D takes value 1 for treatment and 0 for

non-treatment). The population average treatment effect (ATE) is given by:

∆ = E[Y1]− E[Y0]

= E[Y1|D = 1]P [D = 1] + E[Y1|D = 0]P [D = 0]

− E[Y0|D = 1]P [D = 1] + E[Y0|D = 0]P [D = 0], (17)

If we could observe the outcome under the two states of the world for a randomly

chosen individual (Heckman et al., 2006), the identification of ATE would be
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straightforward. In fact, the sampling process is informative only about the

outcome under treatment for treated individuals (E[Y1|D = 1]) and about the

outcome under non-treatment for non-treated individuals (E[Y0|D = 0]). The

main challenge of the analysis is thus recovering the outcome for treated patients

had they not been treated, or E[Y1|D = 0], and vice versa for non-treated

patients.

We represent the average treatment effect in terms of the following index

function model (Vytlacil, 2002):

Yd = r(D) + εd

D∗ = s(Z)− v D = 1(D∗ > 0), (18)

where D∗ is the selection rule that determines who is treated, on the basis

of a binary variable Z (our instrument) which determines treatment, but not

the outcome; εd and v are unobservable disturbances. An example of Z is the

communication skill of the doctor. By contrast, the doctor’s clinical ability is

not a valid instrument since it presumably has a direct effect on the patient

outcomes, Y .

4.2 Empirical strategies

We divide our discussion of our empirical methods into three sections that vary

based on which assumptions we are willing to impose on the relation between

εd and v. In the first, we discuss the methods to recover the population average

treatment effect under assumptions of exogeneity (ordinary least squares). In

the second section, we discuss methods to recover the local average treatment

effect (LATE) if treatment assignment is endogenous (instrumental variables

methods). In the third, we discuss methods to recover the population average

treatment effect under endogenous treatment assignment (bounding methods
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with an instrument).

Recovering the ATE under exogeneity

In the simplest case, when εd⊥v we have that E[Yd|D = 1] = E[Yd|D = 0]. It

then follows that E[Y1|D = 0] = E[Y1|D = 1] and E[Y0|D = 0] = E[Y0|D =

1], which can be substituted in equation 17 to derive ∆ = E[Y1|D = 1] −

E[Y0|D = 0]. This parameter is valid for the entire population, but it is biased

if treatment assignment is endogenous (that is, doctors assign treatment based

on information they observe but that we do not).As such, it is incoherent with

our stylized economic model. We present these results as baseline model to

understand the effect of measuring the LATE rather than the ATE, and of

accounting for endogenous treatment assignment.

Recovering the LATE under endogeneity

A major theme of Section 3 is that the sample of treated individuals is not com-

pletely at random, in the terminology of Little (1995). Physicians recommend

therapy on the basis of variables that both we and they observe (“observables”),

as well as on variables that they observe, but we do not (“unobservables”). In

the remainder of this section, we take the position that conditioning on observ-

ables is not sufficient to solve the selection problem.

Suppose we have an instrument, Z, in the sense described in equation 18.

We assume (without loss of generality) that Z and D are positively correlated.

An instrumental variables estimator that is robust to sorting into treatment

meets the following conditions (Imbens and Angrist, 1994; Angrist et al., 1996):

1. potential outcomes are unrelated to the treatment status of other workers

(also known as stable unit treatment value assumption, or SUTVA);

2. the instrument is correlated with the treatment indicator, D;

24



3. the instrument does not affect the outcome (that is, Z does not enter the

the Yd equation in equation 18), and

4. monotonicity, so that D1 ≥ D0 for each patient, where Dz is the potential

treatment with the instrument Z = z. Under this assumption, there are

exactly three groups: “always takers” who always treated no matter the

value of Z, “never takers” who are never treated no matter the value of

Z, and “compliers” who are treated if Z = 1 and are not treated if Z = 0.

Under these hypotheses, we identify

LATEc ≡
E[Y1|Z = 1]− E[Y0|Z = 0]

E[D1|Z = 1]− E[D0|Z = 0]
= E[Y1 − Y0|D1 > D0]. (19)

While the estimate of the treatment effect is robust to endogeneity, it does not

recover the population ATE. In fact, the IV estimator identifies a local average

treatment effect (LATEc), valid for the subpopulation of patients who are in-

duced to be treated by a change in the instrument. Patients belonging to this

“complier” subpopulation cannot be indentified on the basis of the observable

covariates, although the distribution of their characteristics can be calculated

(Imbens and Rubin, 1997). Thus, when analysts are interested in a treatment

effect for the entire population, as we are, IV-LATE is not be the best option.8

Recovering the ATE under endogeneity

Our goal in this section is to describe the empirical methods we adopt to measure

the population ATE when treatment assignment is endogenous. Identifying the

population average treatment effect is challenging because Y0 is never observed

8IV-LATE would identify the population ATE if the treatment effect of statins can be
assumed homogeneous within the whole population, or when the entire population consists of
compliers, or patients do not self-select on the basis of their idiosyncratic returns (Heckman,
1997; Blundell et al., 2005), or some external information excludes specific subpopulations
(Oreopoulos, 2006). None of these cases can be safely assumed in our context.
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for always-takers (‘at’) and Y1 is never observed for never-takers (‘nt’). Conse-

quently, we cannot identify, given reasonable assumptions, the local treatment

effects, LATEat and LATEnt.

The following decomposition is useful (Chen et al., 2017):

ATE = πat LATEat + πc LATEc + πnt LATEnt, (20)

where π is the share of the attached component.

In this paper, we review some useful assumptions that allow us to recover

the population ATE. These assumptions impose a cost: we cannot point-identify

the ATE. Instead, we identify a set of possible ATEs that are consistent with

our data, in the form of ‘bounds’ on the population ATE(Manski, 1990).

To fix ideas, consider the simplest possible example. Suppose we know,

based on outside information, that Y is contained in a fixed set: Y ∈ [k0, k1]

with k0 ≤ k1. Of course, we observe only one of the two potential outcomes, Y1

or Y0, for each patient. In this case, we know that even in the unobserved state

of the world, the outcome would have been at least equal to k0, thus identifying

a lower bound on the outcome, and at most equal to k1, thus identifying a

upper bound on the outcome. Therefore, the upper bound on the treatment

effect is equal to the difference between the upper bound of the outcome under

treatment and the lower bound under non-treatment (Manski, 1990). Upon

substitution into equation 17, it follows that

Lower : E[Y1|D = 1]P [D = 1] + k1 P [D = 0]− {k0 P [D = 1] + E[Y0|D = 0]P [D = 0]}(21)

Upper : E[Y1|D = 1]P [D = 1] + k0 P [D = 0]− {k1 P [D = 1] + E[Y0|D = 0]P [D = 0]}.(22)

Although these bounds are very useful to understand how set identification

works, they are usually very large and always cross the midpoint between k1
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and k0. The reason this bound on the ATE so wide is that we assume so little.

As a general rule, the stronger the assumptions one is willing to make, the

smaller the width of the bounds.

In this paper, we consider imposing stronger assumptions to narrow the

identified set along the lines of Shaikh and Vytlacil (2011); Bhattacharya et al.

(2008, 2012); Chen et al. (2017). The first three papers consider a binary out-

come variable and impose an individual level monotonicity condition similar to

that of the IV-LATE. Chen et al. (2017) consider continuous outcomes and relax

the monotonicity assumption.

More precisely, besides the IV-LATE conditions of Imbens and Angrist

(1994); Angrist et al. (1996) that we enumerate above, we impose:

1. Y ∈ [K0,K1];

2. E[Y1|S] ≤ E[Y0|S] for S ∈ at, nt, c (or the opposite);

3. E[Y0|at] ≥ E[Y |Z = 0, D = 0] and E[Y1|nt] ≤ E[Y |Z = 1, D = 1], or the

reduction of cholesterol under non-treatment for always-takers is smaller

than for patients for whom Z = 0 and D = 0 (which consist of compliers

and never-takers). Analogous reasoning applies to the second inequality.

The last condition deserves discussion. We impose it for two reasons. First,

this condition is consistent with our economic model. Always-takers have no

clinical alternative to statins, or else their cholesterol would be higher than the

rest of the population. So they benefit on net from taking statins, and will

do so regardless of the value of the instrument. Never-takers, by contrast, can

substitute healthier behaviors (e.g., exercise) for drugs, so the balance between

benefits and costs is more complicated (Atella et al., 2017). If all this is correct,

the pre-treatment conditions of always takers (never takers) should be worse

(better) than for other sub-populations. In the empirical application (Section 5),
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we successfully check all these conditions. Second, the monotonicity assumption

is directly testable, and in the appendix, we show that our data meet the test

(Chen et al., 2017).

The bounds obtained imposing these assumptions are:9

if: E[Y |Z = 1]− E[Y |Z = 0] > 0 :

LB = E[Y |Z = 1]− E[Y |Z = 0]

UB = E[Y |D = 1, Z = 1]− E[Y |D = 0, Z = 0]

if: E[Y |Z = 1]− E[Y |Z = 0] < 0 :

LB = E[Y |D = 1, Z = 1]E[D = 1|Z = 1]− E[Y |D = 0, Z = 0]E[D = 0|Z = 0]+

+K0E[D = 0|Z = 1]−K1E[D = 1|Z = 0]

UB = E[Y |D = 1, Z = 1]E[D = 1|Z = 1]− E[Y |D = 0, Z = 0]E[D = 0|Z = 0]+

+ min{E[Y |D = 0, Z = 1], E[Y |D = 1, Z = 1]}E[D = 0|Z = 1]+

−max{E[Y |D = 1, Z = 0], E[Y |D = 0, Z = 0]}E[D = 1|Z = 0] (23)

In this paper, inference is conducted using the method by Kreider and Pepper

(2007), that is based on nonparametric bootstrap. We discuss these issues

further in the appendix.

5 Results

In this section, we describe the results of our empirical analyses aimed at explor-

ing the effects of changes in recommended dose and of the technological shocks

in the medical literature about the side-effect profile of statin medication.

9Bhattacharya et al. (2008, 2012) discuss the relation between these bounds and those
obtained by Manski and Pepper (2000) imposing Monotone Treatment Response (MTR).
Depalo (2017) shows the one-to-one relation between the heterogeneity in the treatment effect
in the population and width of bounds.
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5.1 Data Subsetting and the Three Eras in Cholesterol

Management

Our theoretical model (Section 3) makes several predictions that we test now.

In most of the section we are interested in ∆ = Y1−Y0. As a key idea underlying

the economic background is that adherence to therapy exerts a positive impact

on the reduction of cholesterol, we begin with this prediction. We move on by

testing the relation between an increase in equipotency dose (Q) and choles-

terol: this is important because before GREACE it was believed that increasing

the equipotency dose reduced the cholesterol level but increased the side effects.

Our model predicts that physicians can learn thanks to new information and/or

the opportunity to visit more patients. If the GREACE trial altered the sci-

entific consensus on this subject, then the clinical characteristics of the treated

population should have changed over the treatment eras, as should have been

the relationship between testing and switching behaviour. Even though this is

true for all physicians, those visiting several patients should have acted more

coherently with the information that was later provided by GREACE.

To test these predictions, we divide our analysis into three time periods

(before 2006, 2006-2010 inclusive, and 2011+) based on information in the lit-

erature on the effect of cholesterol testing on liver function. Recall that in the

early period, the conventional wisdom was that statins may cause liver damage

in some cases. In the middle period, there was some non-randomized evidence

that the effect of statins on liver function might not be directly causal. Finally,

in the late period (after the GREACE randomized trial) statins were known

to protect against liver dysfunction. Therefore, all our analyses are conducted

separately on those three sub-periods.

A key point here is that the nature of the technological advance involved new

information about the properties of an existing drug, rather than any physical
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change in the molecule itself or its formulation. Thus, there is no reason to

expect a change in the effect of drug on cholesterol reduction except through

changes in physician and patient patterns in the use of drug.

In our point-identified results, our conditioning set includes the Charlson

index (a composite comorbidity score explained in Section 2), age, sex, geo-

graphical region, and indicators of the presence of chronic diseases like diabetes,

hypertension, congestive heart failure, atrial fibrillation, vascular diseases, a his-

tory of cardiac bypass surgery or percutaneous coronary intervention (PCI), is-

chemic heart disease, or other cardiac conditions. We include this extensive set

of covariates in these regressions to reduce the chance of bias due to observed

differences between patients assigned different statin molecule/dose combina-

tions.

For the bounding estimators, by contrast, we do not condition on observable

covariates, and instead verify that the assumptions imposed to generate bounds

are met. (Please see Section A). Pepper (2000) presents an illuminating discus-

sion about the different role of covariates in point and set identifications. For

traditional point-identified estimators, namely OLS and IV, covariates generally

serve the purpose of reducing bias due to relevant observable differences between

the treated and untreated groups. In the bounding estimators, covariates are

used to define subgroups of the population for whom separate treatment effect

estimates are of some clinical interest; there is no bias problem as long as the

assumptions underlying the estimator are met.10

10In an online appendix, we calculate our bounding results separately for men and women
because it is in principle possible that the physiological effect of statins on cholesterol, as well
as medication adherence, differ by sex. In practice, consistently with results from RCTs, we
find little difference between the sexes in our results, so we present combined results here to
save space.
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5.2 Physician Habits as an Instrumental Variable

While it may be tempting to compare outcomes for patients on different treat-

ment status, this procedure is not correct, because the set of treated and un-

treated patients is not randomly assigned. In fact, the status depends on a

variety of clinical and economic factors known to both patients and physicians,

but not always known to researchers.

To address this problem, we propose an instrumental variable that is mo-

tivated by our theoretical model – the physician-specific share of patients who

are treated (please see Section 5.3). For a given treatment, this instrument is

calculated for each patient by calculating the behavior of all the other patients

that the patient’s physician manages. This calculation purges any mechani-

cally induced correlation between the instrument and the outcome thus being

exogenous, and is consistent with the stable-unit of treatment value assump-

tion (SUTVA) condition of Imbens and Angrist (1994).11 In all our exercises,

we empirically find that our instrument is strongly correlated with a patient’s

own behavior (the F-Stat from first-stage suggested in Bound et al., 1995 much

greater than 10).

One possible concern about the instrument is that the selection process that

matches patients to GPs is not random. However, in the Italian medical care

system, the choice of general physician is strongly influenced by the location

of the physician and the patient. General practitioners are not allowed to re-

ject a patient for service on the basis of the severity of the patient’s medical

condition. Different values of our instrument, then, are more likely to reflect

distinct practice styles of the practitioners (due perhaps to differences in their

communication skills), rather than unobserved differences in physician behavior

due to the underlying condition of the patient.

11The SUTVA implies that potential outcomes for each person i are unrelated to the treat-
ment status of other individuals (Angrist et al., 1996).
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We use a binary version of our instrumental variable, consistent with the

description of the estimator we adopt in Section 4. To generate this binary

instrument, we calculate the average value of the continuous version of our

instrument. Then, we assign our binary instrument a value of one if the patient

sees doctor who has an average switching rate above the mean switching rate for

all doctors in the sample, and zero otherwise. This approach may be understood

as a comparison of each physisian’s practice style with relative to the community

norm.

5.3 Treatment Adherence Results

A basic assumption of our model is that the adherence to therapy has a positive

impact on the reduction of cholesterol: a patient not taking the prescribed statin

will see little change in their cholesterol level. In this section, we conduct a test

of this assumption.

In Table 4 we report the bounds of Section 4 (using the correction for the

finite sample bias proposed by Kreider and Pepper, 2007), as well as OLS and

IV estimates of the treatment effect. We also include some useful descriptive

statistics: (log) cholesterol level change after six months (Y ) conditional on

adherence during this period of more than 75% (D = 1) and adherence during

this period of less than 75%. We report these results for each type of statin

molecule (for brevity we discuss only the agregate results from the row ‘All’),

as well as for each of the three treatment eras. The numbers in this table are

all negative because these drugs tend to reduce cholesterol levels.

The OLS estimates tend to show small changes in LDL cholesterol levels

correlated with patient adherence. Adherent patients experience (roughly) a

2% reduction in cholesterol levels relative to non-adherent patients. This is

entirely consistent, not surprisingly, with the mean changes observed in the
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right-most columns of the table. Though potentially biased because of the

endogeneity of adherence behavior, the OLS results are interesting because they

represent an estimate of the population level average treatment effect. The OLS

treatment effect is smaller in later treatment eras (3.5% before 2006, about 2.5%

between 2006 and 2011 and 1.5% after 2011): this is consistent with the idea that

the set of people under statin treatment expanded as the fear of liver damage

diminished, namely those with worse unobservable health conditions.

The IV results uses the instrument described in Section 5.2. As is the case

with the OLS results, we find that adherent patients see a greater decrease in

their cholesterol than non-adherent patients. The reduction from IV is never

smaller than that from OLS, thus supporting the idea that the latter is biased

from self-selection.

The IV results are interesting because they address the endogeneity of ad-

herence, but the drawback is that it is consistent only for the local average treat-

ment effect, rather than the population average treatment effect. In this case,

the local average treatment effect applies to the set of patients who adhere to

therapy because they are seeing a doctor whose other patients comply at a rate

higher than the overall adherence rate in the population, but would not adhere

otherwise. There is no reason to think that the treatment effect of adherence in

this “complier” population should coincide with the population treatment effect.

This population is not particularly interesting to clinicians since it is impossible

in general to identify whether any particular patient belongs to it a priori (or

indeed ex post). Because it is not clear who these compliers are, we should not

interpret the changes in the IV estimates in earlier vs. later treatment eras as

the response due to a technological shift for the population of patients suffering

from hypercholesterolemia, nor we can say who was affected by this shift.

Finally, the BSV bounds in Table 4 are fairly wide. The lower bounds show
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reductions in cholesterol on the order of 50%: this reduction may seem large, but

in fact are consistent with the effect size measured in the clinical trials (Scan-

dinavian Simvastatin Survival Study Group, 1994). These bounds shift from

more to less effectiveness (from a more to a less negative parameter of treat-

ment effect). Although the differences over time are always negligible –which

is coherent with the fact that we purged from the unobservable components–,

in relative terms they are more sizable at the upper bounds than at the lower

bounds. As going from the first to the second era, the upper bound shrinks

from 3.8 to 2.1% (a difference of about 2 percentage points); from the second

to the thrid era the reduction is much smaller (from 2.1 to 1.6%, a difference

of about 0.5 percentage points). Since these bounds are robust to non-random

sorting (unlike OLS) and apply to the entire population (unlike IV), these re-

sults suggest a relative more important heterogeneity on the upper bound of the

treatment effect (i.e., where the reduction of cholesterol is smaller).

Overall, the results in Table 4 are consistent with our hypothesis that ad-

herence to therapy leads to lower cholesterol levels in the population at large.

5.4 Effect of Switching Equipotency Levels on Cholesterol

In this section, we explore the effect of changes in equipotency dose on reduction

of serum LDL cholesterol. In one sense, one might think that the answer to this

question is available from the numerous randomized trial data, which show that

increasing statin dose leads to substantial reductions in serum cholesterol levels

reported in Table 1. However, the story in actual practice is complicated by two

phenomena that are not present in the randomized trials (Manski, 2013). First,

the set of people who are treated in the population include many patients who

have health conditions that were not represented in the initial trials (Deaton and

Cartwright, 2017). Though subsequent RCTs may be conducted that expand
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the set of patients exposed to treatment (such as the GREACE trial which

included patients with liver disease), physicians are free to prescribe statins to

patient groups not represented in the trial (and often do). Thus, the treatment

effect in the population may differ from what is observed in the trials.

Second, the set of people who participate in the randomized trials are typ-

ically much more likely to adhere to prescribed therapy than are patients in

the population at large (Frolkis et al., 2002). In trials, investigators regularly

remind patients to stick to the therapy they have been randomly assigned; low

adherence presents problems for investigators in calculating the treatment effect

of the drug, so they take actions to increase adherence. This is less common in

real world treatment settings, where patients make their own decisions about

whether to follow their doctors’ recommendations.

Hence, it is important to discuss the consequences of physicians changing

(namely, raising) the prescribed equipotency level of the statin medication.

These results are presented in Table 5. A doctor might decide to recommend

a higher dose, for instance, if the current dose has not produced a sufficiently

large reduction in LDL cholesterol, and there is no evidence of side effects or

lack of adherence at the current dose. In such a case the switch will produce

a decrease in LDL cholesterol. This is in fact what we empirically observe in

all three treatment eras, and with all three estimators. Let us consider the

estimators robust to unobserved components. When physicians raise the pre-

scribed effective dose, then, both compliers and the population at large enjoy

decreases in serum LDL.12 Over time, the results from Table 5 are remarkably

12Even if the reader is skeptical about our choice of instrument, we argue that a violation
of our IV assumption would likely tend to produce an attenuation bias on our results in
this psecific analysis. Suppose that the physician’s propensity to increase the dose is in
fact correlated with a patient’s unobserved health status. In the case of statins, one of the
few reasons why a physician might recommend switching to an alternate therapy is that
the current molecule and dose is not producing a sufficient reduction in LDL cholesterol level.
Thus switches will be most likely to occur (and physician propensity to switch will be highest)
when the observed change in cholesterol level is smallest.
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stable, overall for set identification. However, to gain further insight on these

results, notice that the IV is slightly increasing over time, thus the subpopula-

tion of compliers may include patients with worse characteristics in later eras

than in earlier eras. Since the medication is prescribed by physicians, having

an in-depth look into the subpopulation of compliers is a first important test on

how practitioner changed their behaviour, according to the new evidence. We

do this in the next section. For completeness, the OLS estimates an ATE that

is systematically biased towards smaller effectiveness of the treatment, like for

the case of adherence.

These results are indistinguishable from those in Table 4. If anything, in

relative terms the lower bounds are identical, whereas the differences on the

upper bounds are slightly increasing over time. This could be due to the RCTs

leading to more patients adherent (a claim that we successfully check in the next

subsection). This is coherent with our claim that there is no reason to expect

a change in the effect of drug on cholesterol reduction except through changes

in physician and patient patterns in the use of drug. Since the decision about

whether the patient should switch to a different dose is made by the physicians,

in what follows we take their viewpoint.

The results in Table 5 do not mean that increasing the effective dose would

always be effective, and that therefore all physicians should recommend that

their patients do so. Rather, the results imply that physicians are good at

predicting when an increase in the prescribed effective dose would not lead

a patient to adhere less to therapy, and thereby gain the full benefit from a

recommendation of a the higher dose.
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5.5 Comparing Always Takers, Never Takers, and Com-

pliers Over Treatment Eras

In this section we discuss how the clinical characteristics of the treated popula-

tion has changed over the treatment eras. Our expectation is that increasingly

more patients with worse characteristics are treated in later eras than in earlier

ones.

Table 6 presents a wide variety of health and health economic variables for

the patients in the sample. In addition to conditioning on the era of treat-

ment, we divide the sample up into four groups based on their values of the

instrument (Z) and whether doctors recommended a change in the equipotency

level of the prescribed medication (D). These four groups are the “always-

takers” (who has a change in equipotency recommended despite being seen by

a doctor who recommends equipotency changes less frequently than average;

we use the terminology in Angrist et al., 1996), “never-takers” (who do not

have a switch recommended, despite being seen by a doctor who recommends

equipotency changes more frequently than average), as well as “compliers”. The

last group consists of two distinct types of patients: (1) patients who are seen

by doctor who recommends equipotency changes more frequently than average

and who have a switch recommended; and (2) patients who are seen by doctor

who recommends equipotency changes less frequently than average and do not

have a switch in their recommended prescribed regimen. The first of these two

“complier” groups include “always-takers” mixed in with the actual compliers,

while the second of these two include “never-takers” mixed in. Thus the clin-

ical characteristics we report in this table for these two “complier” groups are

weighted combinations of actual compliers and some other population (Imbens

and Rubin, 1997).

Two dimensions are relevant for the comparison: we can fix the period and
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compare different sub-population or we can fix the sub-population and compare

different periods. With respect to the former, on many important clinical and

demographic characteristics, the “never-taker”, “always-taker”, and “complier”

groups are indistinguishable from one another on average (Table 6). The char-

acteristics where we observe clinically small differences include: age, sex, the

number of liver function tests ordered (serum albumin, ALT, AST, blirubin),

anemia prevalence, asthma prevalence, body weight or obesity prevalence, ex-

ercise habits, chronic obstructive pulmonary disease prevalence, HDL and LDL

cholesterol levels, history of cardiac bypass surgery or balloon angioplasty, his-

tory of cancer, diabetes prevalence, atrial fibrillation prevalence, hypertension

prevalence, ischemic heart disease prevalence, heart attack history, and history

of vascular disease. This lack of differences across these groups can be sum-

marized nicely by the fact that the distribution of Charlson et al. (1987) Index

scores (which is a summary measure of the presence of chronic diseases in a

patient) does not differ across the four groups in a clinically signficant way.

The “always-takers” do have higher levels of adherence, higher expenditures on

drugs, and higher total medical expenditures, than the “never-takers”, but this

just indicates that they tend to comply more with doctor orders.

One important consequence of this (lack of) finding is that trying to develop

a model to predict whether a doctor is likely to recommend a swtich in therapy

conditional on these observed clinical and demographic characteristics (perhaps

using machine learning methods) would be a difficult challenge. There is clearly

too much clinical overlap between the groups to permit an easily observable

distinction. Doctors recommend switches in equipotency dose on the basis of

characteristics that we do not observe, despite the fact that we observe so many

clinical characteristics.

Also, from Table 6 it is clear that the adherence increased for all the types of
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patients, thus confirming our reading that after the new information provided

by GREACE the adherence rate increased.

By contrast with the results across patient types, Table 6 shows substantial

change in the clinical characteristics of the population in the direction of sicker

patients under treatment over time. For all subgroups of patients, health condi-

tions (either in general, such as the Charleson Index, or those specifically related

to LDL cholesterol) become worse, while the number of liver function tests per

quarter decreases. This trend is particularly striking in the post-GREACE trial

era. Coherent with the first main prediction of our model, as new information

about the side effect profiles of statin became available, physicians update their

beliefs so that the set of patients under treatment expanded to include patients

who were previously thought to be poor candidates for the drug.

5.6 Relationship Between Testing and Switching

We continue to investigate the learning mechanism of physicians by looking at

the probability of a change in recommended equipotency level as a function

of number of liver tests (Table 7). For all patients (see the ‘Overall’ column),

the probability of a change in therapy is an increasing function of the number

of tests: patients who take at least four tests are more likely to switch than

patients who have their liver function tested no more than three times. This

is consistent with both the pre-GREACE guidelines and the post-GREACE

American guidelines, which suggest testing liver function tests at the time of a

recommended switch in therapy. Our results suggest that Italian doctors are

following these guidelines, at least on average.

If we fix the period of analysis and compare different groups of switchers,

patients who are prescribed a higher equipotency dose undergo a larger number

of liver function tests. This is consistent with physician concern that raising
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the dose, or prescribing a stronger molecule may result in a higher risk of liver

side effects. Higher equipotency levels may be more effective, but physicians are

concerned that they may also be more damaging.

Next, we examine changes across treatment eras, holding fixed switcher

groups. This “vertical” comparison is motivated by the information shock pro-

vided by GREACE, as well as the observational evidence piling up before 2010.

For all groups of patients, there is an abrupt change in “testing behaviour”

that is evident in the post-GREACE era. For example, with respect to the base-

line category of no liver function tests, the probability of switching the therapy

to a lower class of equivalence with four tests was larger than 2% (0.02138) before

2006, compared with less than two percent between 2006 and 2010 (0.01839), or

a decrease of about 15%;13 after the results of the GREACE trial became avail-

able, the probability of switching conditional on at leat four tests went further

down (again, with respect to the baseline category) to about 1%, or a decrease

of 30%. Similar results can be seen for patients switching to an higher equipo-

tency class. The probability of switching the therapy to an higher equipotency

class with four or more liver tests was slightly smaller than 15% before 2006,

and decreased marginally in the following period (a decrease equal to 3.5%), but

more strongly after GREACE (a drop as large as 25%). Clearly, the GREACE

information shock affected liver function testing behavior for all groups of pa-

tients, with those switching to a lower equipotency class more affected. This

pattern of results is consistent with the idea that Italian GPs changed their

practice in response to new scientific information, and relatively quickly.

By and large we could not reject the first main prediction of our model that

after a change in clinical evidence, there is a change in beliefs of the doctors.

13Given the large difference in the absolute values of the probability, we find the comparison
of these relative risk more fair than the comparison of the attributable risk. For a more
thorough discussion on this kind of comparisons and for similar conclusions, see Manski (2009).
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5.7 Physician Experience and Physician Learning

The last prediction from Section 3 is that the larger the number of patients

cured by a given doctor, the larger the opportunity for the physicians to update

their beliefs such that they become closer to the truth. If so, physicians are less

worried by the liver test of their patients because thanks to their learning they

understand that the abnormal values are not the consequence of the statins

(from Section 3 recall that g′(N) > 0). For example, a doctor in the first

quartile has a smaller opportunity to learn from patients than a doctor in the

second quartile because, by construction, has fewer observational cases of bad

cholesterol; similarly, a doctor in the second quartile has a smaller opportunity

to learn from patients than a doctor in the third quartile.

To check this prediction, in Table 8 we report the average number of tests,

over time and by quartile of number of patients suffering from cholesterol. As

going from one quartile to the following, the number of tests delivered decreases.

Although the differences are generally small, they are larger when the switch is

from a lower to an upper dose; in contrast, when the switch is from an upper

to a lower dose, not only are the differences smaller, but also in a less clear

direction (i.e., some times there is an increase in number of test as quantile of

patient increases and some times a decrease). Although our model tells nothing

about this direction, we think reasonable that there is no concern when moving

to a lower dose, but there is when the intake increases.

When physicians have no way to learn from their patients (recall that g(0) =

0), they can only learn from official documentation, i.e. clinical trial. Confirming

this feature of our model, the average number of tests is higher before evidence

against the belief of statin as the cause of liver demages is provided (i.e., the

difference is higher before 2006), to decrease the first time when studies began

to suggest that statins might not be the cause of liver function abnormalities in
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patients taking statins in 2006, and reduce further when it was finally established

that statins may actually help patients with liver function abnormalities.

Our model does not say anything on a threshold for g(N) >> 0. We rely

on quartiles for simplicity of exposition, which conveys the effects across the

distribution adequately. With this quartile based split, the most striking results

are for ‘extreme physicians’, that is, those without many opportunities to learn

from their patients (i.e., g(0) = 0) and those who can learn much (i.e., g(N) =

1); in between, the differences are more nuanced.

Interestingly, the differences (across different quantiles) in differences (across

eras) suggest that the learning process is decreasing in quantiles of observed

patients, thus physicians at first quartile learned more after 2006 than physicians

at second quartile. Some exceptions are observed only when the third quartile is

involved. Although this is not strictly required by our model, we view this result

as reinforcing the evidence in favour of the mechanism we proposed regarding

the physicians’ learning.

6 Conclusion

In this paper we investigate the relation between technological advance, in the

form of an information shock, and changes in physicians and patient behavior.

We focus on the case of statins, a medication used to manage high cholesterol

levels, where newly produced evidence has altered the scientific consensus re-

garding side effect profiles.

Early common wisdom held that statins may cause liver damage and there-

fore patients should be regularly tested for changes in liver enzyme levels. In

2010 GREACE, a large and influential randomized controlled trial, suggested

instead that the medication could be continued despite elevated liver enzymes,

and that patients need not be tested regularly for liver damage. We exploit this
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major informational technological shock to test how physicians prescription and

testing behavior and patients adherence to therapy changed in response.

We test our model using a unique dataset representative of the Italian popu-

lation, that links patients to doctors over the period 2003-2014. We account for

the possible non-random sorting of patients into treatment by exploiting an in-

strument which is assigned effectively at random. We employ a non-parametric

bounding approach that takes into account the selection mechanism (unlike or-

dinary least squares) and permits conclusions about the entire population (un-

like standard instrumental variables estimation). Our results show that doctors

responded promptly to this technological shock.
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Table 1: Statin conversion table

Class % LDL red. Simva Ator Rosu
1 <24 5 - -
2 25–32 10 - -
3 31–39 20 10 -
4 37–45 40 20 5
5 48–52 80 40 10
6 55–60 - 80 20
7 60–63 - - 40

Table 2: Descriptive statistics
Women Men

Variabile Mean S.D. Median Mean S.D. Median
∆ Chol. -0.03812 0.19161 -0.01911 -0.03776 0.18461 -0.02010
LDL 120.70131 36.26905 115.77856 110.84665 34.90859 106.31404
Adherence 0.64299 0.28583 0.62921 0.69568 0.28073 0.67416
ALP 0.06080 0.25567 0.00000 0.05228 0.24262 0.00000
ALT 0.29048 0.50879 0.00000 0.28997 0.51597 0.00000
AST 0.27201 0.49636 0.00000 0.26991 0.50155 0.00000
Albumin 0.02888 0.17698 0.00000 0.02967 0.18138 0.00000
Birilubin 0.02181 0.15431 0.00000 0.02190 0.15578 0.00000
Birilubin (Tot & Fract.) 0.04222 0.21578 0.00000 0.04308 0.22302 0.00000
Charlson ind. 1.00882 1.15930 1.00000 1.22023 1.26860 1.00000
Equip. 4.49154 0.64965 4.00000 4.61510 0.69400 5.00000
Diabetes 0.24669 0.43109 0.00000 0.29706 0.45696 0.00000
Hypert. 0.72070 0.44865 1.00000 0.68348 0.46512 1.00000
Congestive heart failure 0.02697 0.16200 0.00000 0.03852 0.19246 0.00000
Atrial fibrillation 0.05063 0.21925 0.00000 0.06261 0.24225 0.00000
Vasc. Deas. 0.01009 0.09994 0.00000 0.01934 0.13772 0.00000
PCI 0.00132 0.03629 0.00000 0.00511 0.07132 0.00000
Ischemic heart 0.01392 0.11714 0.00000 0.01733 0.13050 0.00000
Other Heart 0.13643 0.34324 0.00000 0.31022 0.46258 0.00000
Age 68.94675 9.31172 70.00000 65.53925 10.28141 66.00000
North W 0.24379 0.42937 0.00000 0.26874 0.44331 0.00000
Nort E 0.21095 0.40799 0.00000 0.21464 0.41057 0.00000
Center 0.18273 0.38645 0.00000 0.17311 0.37834 0.00000
South 0.24468 0.42990 0.00000 0.23888 0.42640 0.00000
simvastatin 0.44051 0.49645 0.00000 0.39973 0.48984 0.00000
atorvastatin 0.34151 0.47422 0.00000 0.38324 0.48618 0.00000
rosuvastatin 0.21797 0.41287 0.00000 0.21703 0.41223 0.00000
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Table 3: Number of prescription by active ingredient and dosage
Statin

Variable mg Simva. Ator. Rosu.
Men 5 0 0 18705

10 14282 105253 132127
20 246066 166173 26579
40 70926 42047 2455
80 0 4131 0

Women 5 0 0 25440
10 24684 137788 158079
20 331071 164907 24892
40 68835 24946 1684
80 0 1525 0

Table 4: Reduction of Cholesterol and Adherence
BSV Point Averages

Statin Lower Upper OLS IV [Y |D = 0] [Y |D = 1] ∆Y
All

Simva. -0.43697 -0.01120 -0.01251 -0.01308 -0.04134 -0.03007 -0.01127
Ator. -0.46370 -0.01962 -0.02165 -0.01657 -0.04707 -0.02688 -0.02019
Rosu. 0.00123 -0.02041 -0.02530 0.00980 -0.05739 -0.03277 -0.02462

All -0.47358 -0.01837 -0.02006 -0.01417 -0.04830 -0.02930 -0.01899
Before 2006

Simva. -0.46090 -0.01924 -0.01806 -0.02855 -0.04528 -0.02740 -0.01788
Ator. -0.51883 -0.02504 -0.02597 -0.02141 -0.06181 -0.03687 -0.02493
Rosu. -0.63957 -0.06442 -0.05002 -0.14422 -0.14016 -0.08948 -0.05068

All -0.51038 -0.03818 -0.03431 -0.05770 -0.06857 -0.03488 -0.03368
2006-2011

Simva. -0.62380 -0.00939 -0.01173 -0.00578 -0.03910 -0.02887 -0.01023
Ator. -0.46324 -0.01979 -0.01995 -0.02327 -0.03948 -0.02035 -0.01914
Rosu. -0.66817 -0.02599 -0.02913 -0.00823 -0.06408 -0.03580 -0.02828

All -0.49773 -0.02137 -0.02228 -0.02125 -0.04809 -0.02694 -0.02114
After 2011

Simva. -0.44628 -0.00992 -0.01190 -0.01282 -0.04269 -0.03242 -0.01027
Ator. -0.49134 -0.02170 -0.02297 -0.03021 -0.05001 -0.02915 -0.02086
Rosu. -0.71471 -0.01835 -0.02091 0.00281 -0.04214 -0.02118 -0.02095

All -0.48154 -0.01693 -0.01670 -0.02839 -0.04500 -0.02944 -0.01556
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Table 5: Reduction of Cholesterol and change in therapy (more equivalence)
BSV Point Averages

Statin Lower Upper OLS IV [Y |D = 0] [Y |D = 1] ∆Y
All

Simva. -0.49922 -0.00236 0.00190 -0.02847 -0.03266 -0.03525 0.00260
Ator. -0.68968 -0.00259 0.00748 -0.00218 -0.03090 -0.03850 0.00759
Rosu. 0.00139 0.00594 0.00470 0.02398 -0.04483 -0.04983 0.00500

All -0.48325 -0.00102 0.00321 -0.00874 -0.03634 -0.03984 0.00349
Before 2006

Simva. -0.56281 -0.00646 -0.00489 -0.05249 -0.03603 -0.03081 -0.00521
Ator. -0.69352 -0.00162 0.00016 -0.02591 -0.04292 -0.04351 0.00059
Rosu. 0.00768 0.01504 0.05387 0.56251 -0.06833 -0.11806 0.04973

All -0.55212 -0.00959 -0.00505 -0.06541 -0.04779 -0.04299 -0.00480
2006-2011

Simva. -0.53375 -0.01454 -0.00753 -0.10426 -0.04007 -0.03256 -0.00752
Ator. -0.52547 -0.00307 0.00031 -0.06596 -0.02796 -0.02819 0.00023
Rosu. -0.67721 -0.00358 0.00355 -0.15750 -0.04927 -0.05424 0.00498

All -0.53566 -0.00835 -0.00510 -0.05547 -0.04080 -0.03599 -0.00481
After 2011

Simva. -0.53699 -0.00877 -0.00644 -0.06850 -0.04312 -0.03634 -0.00678
Ator. -0.58536 -0.00187 -0.00053 -0.04750 -0.04009 -0.03917 -0.00092
Rosu. -0.63182 -0.00181 -0.00212 -0.25837 -0.03649 -0.03404 -0.00245

All -0.54539 -0.00980 -0.00833 -0.03535 -0.04589 -0.03720 -0.00869
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Table 6: Characterization of subpopulations
Never D=0, Compliers D=1,Compliers Always

Variable All Pre Dur. Post All Pre Dur. Post All Pre Dur. Post All Pre Dur. Post
age 67.42 64.78 67.04 68.86 68.02 64.93 67.09 69.01 67.06 64.03 66.15 67.72 66.93 63.89 65.95 67.66

albumina num 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03
alp num 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.05

alt gpt num 0.28 0.30 0.30 0.27 0.27 0.29 0.28 0.26 0.31 0.33 0.34 0.32 0.30 0.34 0.32 0.30
anem 0.08 0.03 0.06 0.11 0.07 0.03 0.06 0.10 0.09 0.03 0.07 0.12 0.08 0.04 0.07 0.10
asma 0.06 0.04 0.05 0.07 0.05 0.03 0.05 0.07 0.06 0.04 0.05 0.09 0.06 0.04 0.05 0.07

ast got num 0.27 0.29 0.29 0.25 0.24 0.27 0.26 0.24 0.30 0.32 0.33 0.29 0.27 0.33 0.30 0.28
bilirub tot e fraz num 0.05 0.03 0.04 0.05 0.04 0.02 0.04 0.04 0.05 0.02 0.04 0.05 0.04 0.03 0.04 0.04

bilirub tot num 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02
bmi 28.58 28.36 28.62 28.50 28.62 28.60 28.73 28.57 28.58 28.23 28.69 28.66 28.62 28.54 28.61 28.64

bpco 0.07 0.05 0.07 0.08 0.07 0.05 0.07 0.08 0.08 0.06 0.06 0.09 0.07 0.06 0.07 0.08
col hdl 1.41 1.43 1.41 1.42 1.44 1.44 1.41 1.44 1.40 1.44 1.39 1.40 1.40 1.43 1.38 1.38
col ldl 2.98 3.29 3.04 2.84 2.97 3.33 3.06 2.85 3.09 3.54 3.22 3.12 3.10 3.54 3.24 3.10
col tot 5.12 5.53 5.19 4.95 5.13 5.57 5.22 4.99 5.29 5.85 5.42 5.26 5.30 5.85 5.46 5.26

compliance 0.64 0.54 0.66 0.69 0.63 0.53 0.66 0.68 0.70 0.62 0.74 0.74 0.70 0.61 0.74 0.75
du area1 0.22 0.26 0.26 0.23 0.30 0.25 0.26 0.29 0.22 0.27 0.26 0.21 0.29 0.25 0.26 0.28
du area2 0.16 0.20 0.20 0.22 0.28 0.26 0.24 0.20 0.15 0.20 0.19 0.22 0.27 0.22 0.23 0.20
du area3 0.21 0.20 0.16 0.17 0.15 0.14 0.19 0.19 0.21 0.20 0.19 0.16 0.14 0.17 0.17 0.21
du area4 0.26 0.22 0.25 0.25 0.22 0.26 0.23 0.23 0.26 0.20 0.24 0.25 0.24 0.27 0.24 0.23
du area5 0.15 0.12 0.12 0.13 0.06 0.09 0.09 0.08 0.16 0.12 0.12 0.16 0.07 0.09 0.10 0.08

du bypass pci 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01
du decesso 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

du diab 0.26 0.22 0.28 0.28 0.25 0.22 0.27 0.27 0.29 0.21 0.30 0.29 0.27 0.22 0.29 0.29
du fib atr 0.05 0.03 0.05 0.07 0.06 0.03 0.05 0.07 0.05 0.03 0.04 0.07 0.06 0.04 0.05 0.07
du hyper 0.71 0.62 0.71 0.74 0.71 0.63 0.70 0.73 0.71 0.61 0.70 0.74 0.69 0.60 0.69 0.72
du ictus 0.12 0.08 0.12 0.16 0.13 0.09 0.12 0.14 0.14 0.09 0.14 0.19 0.15 0.09 0.14 0.18
du isch 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02

du malcor 0.18 0.22 0.21 0.19 0.17 0.23 0.21 0.19 0.25 0.25 0.28 0.24 0.26 0.27 0.31 0.27
du sc card 0.03 0.02 0.03 0.04 0.03 0.02 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.03 0.03 0.05
du vasc d 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01

ducharlson1 0.40 0.49 0.39 0.34 0.40 0.48 0.40 0.37 0.37 0.49 0.36 0.31 0.36 0.47 0.36 0.33
ducharlson2 0.32 0.30 0.33 0.32 0.32 0.30 0.32 0.32 0.32 0.29 0.33 0.32 0.32 0.31 0.33 0.32
ducharlson3 0.17 0.13 0.17 0.19 0.17 0.14 0.17 0.18 0.18 0.14 0.19 0.20 0.18 0.14 0.18 0.19
ducharlson4 0.11 0.08 0.11 0.15 0.11 0.07 0.11 0.13 0.13 0.08 0.12 0.17 0.14 0.08 0.13 0.16

female 0.54 0.55 0.53 0.54 0.55 0.54 0.53 0.55 0.53 0.55 0.52 0.54 0.53 0.53 0.50 0.52
fumo 0.03 0.05 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03

fumo ex 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.04
fumo no 0.05 0.05 0.04 0.06 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.06 0.04 0.05 0.03 0.05

i bmi 28.33 27.88 28.28 28.39 28.34 28.06 28.37 28.46 28.30 27.96 28.31 28.53 28.31 27.95 28.24 28.39
i p max 135.53 137.80 136.50 134.76 136.27 138.46 136.23 134.85 135.78 137.53 136.64 134.27 135.89 137.38 135.94 134.64
i p min 79.42 80.95 79.90 78.41 79.36 81.13 79.67 78.42 79.51 81.02 79.93 78.52 79.34 80.87 79.52 78.61

mrge 0.19 0.10 0.16 0.26 0.17 0.09 0.16 0.22 0.21 0.11 0.18 0.29 0.19 0.11 0.17 0.25
obes 0.08 0.06 0.08 0.10 0.10 0.06 0.08 0.10 0.08 0.06 0.09 0.11 0.09 0.06 0.09 0.10

parkinson 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01
q a 9.51 8.56 9.74 10.76 10.02 8.52 9.90 10.04 10.34 8.78 10.54 12.37 10.83 9.52 10.86 11.17

q a 2 0.34 0.36 0.39 0.30 0.31 0.35 0.35 0.29 0.38 0.38 0.42 0.35 0.35 0.39 0.40 0.34
s a 64.21 54.28 67.50 69.49 62.55 52.42 63.40 66.42 70.39 55.70 73.98 78.94 69.78 58.26 74.18 75.79

s a 2 6.91 7.40 8.14 6.08 6.43 7.20 7.40 5.93 7.54 7.67 8.68 6.86 7.43 7.91 8.48 6.91
s t 218.16 248.75 228.68 215.73 209.19 239.46 226.66 213.45 242.92 254.08 255.51 231.79 247.17 264.78 263.84 247.21

s tot 282.37 303.03 296.18 285.22 271.75 291.88 290.06 279.88 313.31 309.78 329.49 310.73 316.96 323.04 338.02 323.00
sport leggero 0.07 0.08 0.07 0.08 0.08 0.09 0.08 0.07 0.07 0.08 0.07 0.08 0.08 0.08 0.09 0.08
sport medio 0.01 0.02 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.03 0.01 0.01 0.02 0.02 0.02 0.02

sport no 0.08 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.09 0.08 0.09 0.10 0.08 0.08 0.07 0.07
sport pesante 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tiroide 0.21 0.12 0.18 0.25 0.19 0.12 0.18 0.23 0.21 0.13 0.17 0.27 0.19 0.12 0.18 0.23
trigli 1.65 1.84 1.70 1.58 1.61 1.85 1.71 1.58 1.77 2.01 1.82 1.69 1.78 2.09 1.89 1.76
tum 0.11 0.08 0.11 0.14 0.12 0.09 0.11 0.13 0.11 0.07 0.10 0.13 0.11 0.07 0.10 0.12
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Table 7: Pattern of behaviour of liver test
Number Overall Lower dose Higher dose

All
1 0.07212 *** 0.00930 *** 0.06789 ***
2 0.08176 *** 0.01049 *** 0.07588 ***
3 0.07025 *** 0.00807 *** 0.06623 ***
4 0.12224 *** 0.01636 *** 0.11572 ***
5 0.12011 *** 0.01623 *** 0.11528 ***

Before 2006
1 0.07886 *** 0.00849 *** 0.07493 ***
2 0.08679 *** 0.01040 *** 0.07847 ***
3 0.08698 *** 0.01106 *** 0.07847 ***
4 0.14324 *** 0.02138 *** 0.13541 ***
5 0.16685 *** 0.02690 *** 0.16181 ***

2006-2010
1 0.08341 *** 0.00849 *** 0.08015 ***
2 0.08738 *** 0.01081 *** 0.08301 ***
3 0.08126 *** 0.00956 *** 0.07738 ***
4 0.13702 *** 0.01839 *** 0.13055 ***
5 0.13595 *** 0.01750 *** 0.12986 ***

After 2010
1 0.06654 *** 0.01071 *** 0.06123 ***
2 0.08120 *** 0.00991 *** 0.07674 ***
3 0.06299 *** 0.00618 *** 0.06022 ***
4 0.10443 *** 0.01296 *** 0.09897 ***
5 0.09365 *** 0.01250 *** 0.08811 ***
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A Testing Monotonicity and Exogeneity

We also tested the non-rejection of the validity of exogeneity and monotonicity

assumptions using a test proposed by Mourifie and Wan (2016).

Notice that E[Y |D = 0, Z = 0] = πc

πc+πnt
Yc + πnt

πc+πnt
Ynt. This implies

the following testable implications when LATEc is positive: E[Y |D = 1, Z =

0] ≥ E[Y |D = 0, Z = 0] (related to the always takers part) and E[Y |D =

1, Z = 1] ≥ E[Y |D = 0, Z = 1] (related to the never takers part). Focus on

the always takers. In this case, fixing Z = 0, a positive treatment effect makes

E[Y1] ≥ E[Y0]. As a consequence, if LATEC ≥ 0, rejecting this hypothesis is

strong evidence against them (Chen et al., 2017).

When the treatment effect LATEC ≤ 0, then E[Y0|at] ≥ E[Y1|at]. There-

fore, non-rejecting the null hypothesis that E[Y |D = 1, Z = 0] ≥ E[Y |D =

0, Z = 0] when LATEc ≤ 0 is a strong supporting argument in favour of the

working hypotheses, because it implies that E[Y0|at] ≥ E[Y1|at] = E[Y |D =

1, Z = 0] ≥ E[Y |D = 0, Z = 0].

In our exercise, for the case of lower equipotency we obtain that E[Y |D =

1, Z = 0] = −.03650743,E[Y |D = 0, Z = 0] = −.03840154, and E[Y |D =

1, Z = 1] = −.0364091 and E[Y |D = 0, Z = 1] = −.04198889; for the case of

higher equipotency, the E[Y |D = 1, Z = 0] = −.03575313,E[Y |D = 0, Z = 0] =

−.03908531, and E[Y |D = 1, Z = 1] = −.03685148 and E[Y |D = 0, Z = 1] =

−.04085401, therefore in both cases E[Y |D = 1, Z = 0] ≥ E[Y |D = 0, Z = 0],

and E[Y |D = 1, Z = 1] ≥ E[Y |D = 0, Z = 1] as required by assumption 3 of

the bounds in Chen et al. (2017).

The economic content of this condition is non trivial: it suggests that if the

always takers did not take pills, their reduction of cholesterol in the population

would be the lowest. As for the never takers, they can substitute pills with

other behviour, like physical activity (Atella et al., 2017).
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B Inference

Bounds in eq. 23 involve minima and maxima. In finite sample these es-

timators are biased, typically providing conservative (i.e., smaller) bounds.

Corrections have been proposed by Chernozhukov et al. (2013); Kreider and

Pepper (2007). To implement the method in Kreider and Pepper (2007), de-

fine Tn the sample analog of the consistent estimator of the parameter θ, by

definition the bias bn = E[Tn] − θ. The nonparametric bootstrap delivers

b̂ = E∗[Tn]− Tn, where E∗[·] is the expectations with respect to the bootstrap

distribution. The bootstrap bias-corrected estimator can now be calculated as

T cn = Tn − b̂ = 2Tn − E∗[Tn]. Kreider and Pepper (2007) provide evidence in

favour of this approach. The method by Chernozhukov et al. (2013) is based

on precision-corrected estimate of the sample analog estimator ˆθ(p) + k(p) s(x),

with s(x) the standard error of ˆθ(x), and k(p) is a critical value that is based on

an adaptive inequality selection procedure proposed on purpose. In our applica-

tion we rely on Kreider and Pepper (2007) for several reasons: 1) it is easier to

understand and to implement (notice however that Chernozhukov, 2015 provide

a Stata-routine for the method); 2) it is computationally much faster than the

alternative Chernozhukov et al., 2013; Chernozhukov, 2015; 3) the correction

in Kreider and Pepper (2007) performs well based on Montecarlo evidence pro-

vided by the authors. 4) with our sample size, the difference between the two

methods should be negligible.

Based on the bootstrap bias-corrected estimator, Kreider and Pepper (2007)

provide the associated confidence interval. McCarthy et al. (2015) propose to

use either Kreider and Pepper (2007) altogether or the method of Kreider and

Pepper (2007) for the finite-sample correction and the asymptotic inference

suggested by Imbens and Manski (2004).
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