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Abstract

Americans’ use of preventive care is half the recommended level. In fact, greater utiliza-
tion of preventive care has become a national health policy objective. Previous economic
studies suggest that price is not the only important factor that impacts the demand for
preventive care. In addition, empirical evidence suggests that some people are health
information avoidant, which means that they prefer not knowing information about their
health even when diagnostic testing is free and very accurate. To explain this puzzle, this
study embodies insights from the economics theoretical literature to incorporate health
anxiety, which represents the stress or disutility associated with the anticipation of bad
outcomes, as another potential cost of having a test in an individual’s forward-looking,
dynamic decisionmaking process. With data from the Health and Retirement Study
(HRS), I evaluate the roles of many contributors, including health anxiety, to the ob-
served type-2 diabetes screening behavior by jointly estimating a set of equations derived
from a forward-looking individual’s decision-making optimization problem. In the model,
she chooses the number of doctor visits, lifestyle behaviors, and employment; underly-
ing disease state governs her diabetes stage and she has imperfect information about her
true health. Estimation results suggest that the monetary costs, time costs, health and
longevity expectations, and health anxiety are all important contributors to an individ-
ual’s blood sugar testing behavior. Individuals’ health-related behaviors also respond to
health information associated with screening tests.
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1 Introduction

According to the Centers for Disease Control and Prevention (CDC), consumption of

preventive medical care is well below recommended levels. In fact, greater utilization

of preventive care, especially for chronic conditions, has become a national health pol-

icy objective (e.g., the Healthy People 2020 Leading Health Indicators). Basic economic

theory suggests that a reduction in the price of preventive care will increase the amount

demanded. Recent U.S. reforms embodied in the Affordable Care Act (ACA) reflect this

insight by requiring that insurance companies impose no consumer cost-sharing on ap-

proved preventive services. However, economic studies that exploit the exogenous changes

in cost-sharing brought about by the RAND Health Insurance Experiment and the ACA

reforms suggest that something else, other than price, may have an important impact

on demand for preventive services. For example, data from the RAND Health Insurance

Experiment suggest that, even with zero out-of-pocket costs, the majority of adult males

used no preventive care at all for three years (Newhouse et al., 1993). Using more recent

data, some researchers find that reductions in the price of screening (for high cholesterol,

breast cancer, diabetes, etc.) encourage its use (Finkelstein et al., 2012), while others find

that consumers are not very sensitive to the price of preventive care (Newhouse et al.,

1993; Simon et al., 2016; and Sabik and Bradley, 2016).

In addition to this ambiguity among results, it has been suggested that some people

are health information avoidant, which means that they prefer not knowing information

about their health even when the screening tests are free and very accurate (Oster et al.,

2013 and Ganguly and Tasoff, 2016). This type of behavior suggests that there might be

additional costs associated with having a test that are not captured by our traditional

economic model. To address this puzzle, economists have adapted theoretical models of

individual behaviors by incorporating anticipatory utility, which suggests that individuals

acquire utility directly from expectations, or anticipations, about the future. That is, the

model should consider health anxiety, which represents the stress or disutility associated

with the anticipation of positive (i.e., bad outcome) test results, as an additional cost

in an individual’s forward-looking, dynamic decision making process (Caplin and Leahy,

2001; Kőszegi, 2003 and Caplin and Eliaz, 2003).

Although widely discussed in the economic theory literature, this concept of health

anxiety remains underexplored empirically because measurement is, to date, elusive. That

is, there is no validated survey measure of individual avoidance of particular preventive

care screenings/testings due to anxiety about the results. Alternatively, and as I pro-

pose, this kind of behavior can be approximated and inferred using variation in particular
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personality characteristics after modeling the many other potential explanations for non-

participation in a recommended testing. Following the definition of health anxiety in the

economic theoretical literature, an individual’s pessimism level serves as a good approxi-

mation for health anxiety as people who are more pessimistic are more likely to anticipate

a bad result and thus suffer from this disutility. This study evaluates the role of many

contributors, including health anxiety, to type-2 diabetes screening behavior by devel-

oping a dynamic, stochastic model of an individual’s decisions about doctor visits (at

which a blood sugar test may or may not be administered), other health-related behav-

iors, and employment where underlying disease state governs diabetes stage, individuals

have imperfect information about their true health (if untested), and health anxiety is

approximated by an individual’s pessimism level.1 By incorporating health anxiety, this

study provides a richer framework for understanding an individual’s non-participation in

diabetes screening.

Type-2 diabetes, or diabetes mellitus type 2, is a long-term metabolic disease charac-

terized by a high blood sugar level over a prolonged period because the cells fail to use

insulin properly to process glucose.2 Type-2 diabetes is primarily caused by obesity and

lack of exercise and commonly manifests in adulthood. The common treatments include

exercise, diet adjustment, oral medication and insulin shots. Poorly-managed diabetes

can progress irreversibly to severe stages and cause other complications such as blindness,

lower body amputation, heart attack and stroke (Oster, 2015 and Mroz et al., 2016).

Type-2 diabetes provides a good setting to study testing behavior and health anxiety

for three reasons. First, the asymptomatic features of diabetes enable me to examine

testing behavior and health anxiety without worrying about the confounding effects of

disease symptoms on medical care consumption behavior. Second, it is often difficult to

distinguish health anxiety from the disutility associated with the testing procedure itself.

Diabetes screening (or the blood sugar test) is less invasive than other preventive tests

such as a mammogram, prostate, or cancer screening. Third, understanding the diabetes

screening behavior is of significant policy importance. Diabetes is a prevalent and grow-

ing chronic condition. There are 29 million Americans (i.e., 1 out of every 11 Americans)

living with diabetes, 86 million (i.e., 1 out of every 3 Americans) living with pre-diabetes

and 1.7 million new cases diagnosed each year.3 Because diabetes is an asymptomatic

1In this paper, a blood sugar test refers to type-2 diabetes screening.
2With type-1 diabetes, a high blood sugar level results from the failure of the pancreas to produce

any insulin. The cause of type-1 diabetes is not clear and it usually starts in childhood. Type-1 diabetic
patients have to take a routine insulin shot as a replacement of pancreatic function. In this paper,
‘diabetes’ refers to type-2 diabetes.

3Pre-diabetes is the precursor stage of type-2 diabetes, when the blood sugar level is higher than
normal but not yet high enough to be diagnosed as diabetes.
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disease, preventive screening is important. According to the CDC, up to 25 percent of

U.S. adults who have diabetes do not know that they have it, and 90 percent of people

with prediabetes are unaware. Without any life-style changes, 15 to 30 percent of people

with prediabetes will develop type-2 diabetes within five years (CDC Division of Diabetes

Translation, 2014). In fact, only half of individuals for whom diabetes screening is rec-

ommended comply. Additionally, diabetes is more costly to treat if detected later (Mroz

et al., 2016). Given that the annual costs of diabetes account for 20 percent of national

medical care costs ($176 billion in direct medical costs and an additional $69 billion asso-

ciated with reduced productivity in 2012), an improvement in diabetes screening behavior

could have both individual and societal impacts (American Diabetes Association, 2013).

The impacts of various contributors on an individual’s diabetes screening behavior are

explicitly delineated in the theoretical model. The contributors are: monetary and time

costs of doctor visits and tests; the marginal effectiveness of different types of medical and

non-medical inputs for controlling blood sugar levels; an incorrect perception of health;

life expectancy; and health anxiety. To reflect the fact that physicians may also play

an important role in an individual’s screening behavior, I assume that an undiagnosed

individual, with at least one doctor visit during a two-year period, may receive a diabetes

screening (or a blood sugar test) with some probability. Prior to learning her true disease

state (which can only be verified with a blood sugar test), an individual bases her decisions

about medical care use and other health behaviors on her perceived, or subjective, health

status. The subjective and true disease states capture the degree to which information

about one’s own health is imperfect. Subjective beliefs about one’s health are captured

by self-reported health status and a subjective survival probability.

Solving the optimization problem, I derive the demand behaviors (i.e., doctor visits,

employment, exercise level, smoking and excessive drinking) as a function of information

available to the individual at the beginning of the period. Approximations of the demand

equations yield a set of estimable equations that are jointly estimated with observed

stochastic outcomes (i.e., diabetes screening and hospitalization nights), health outcomes

(i.e., blood sugar level evolution, body mass accumulation, death) and expectations pro-

cesses (i.e., self-perceived health status and subjective survival probability transitions).

The joint estimation procedure allows for common unobservables that might influence

several outcomes within a period and/or over time. Simulations based on the estimated

data-generating process are used to evaluate the relative marginal contribution of each

contributor, including health anxiety, to an individual’s behaviors and health outcomes

over a lifetime.

My primary data source is the Health and Retirement Study (HRS) survey and its
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linked biomarker data. The HRS survey data are longitudinal, with biennial observations

from 1992 to 2014. New cohorts enter the survey every six years. Constrained by the

availability of blood sugar test information, I only use the data from 2004 to 2012. The

survey provides information about an individual’s employment, health-related behaviors,

medical care consumption, diabetes status, and blood sugar testing behavior. The linked

biomarker data collect and test respondents’ blood samples biennially from 2006 to 2012,

from which I can observe an individual’s true disease state.

I contribute to the literature by estimating and evaluating the marginal effects of

many contributors to the observed diabetes screening behavior. The estimation results

suggest that monetary and time costs of doctor visits and tests, health and longevity

expectations, and health anxiety are all important contributors to an individual’s blood

sugar testing behavior. Specifically, a health anxious individual is less likely to receive

a diabetes screening test by reducing the number of doctor visits and avoiding the test

during a visit. The health information associated with a diagnosis of diabetes or taking

a test influences an individual’s body mass production contemporaneously and lifestyle

behaviors in the subsequent periods.

The rest of the paper is structured as following. Section 2 discusses the related litera-

ture, Section 3 introduces a simple theoretical model to motivate inclusion of the various

contributors of screening behaviors, and Section 4 provides information about the data

and estimation sample. Section 5 describes the derived empirical framework. Section 6

presents estimation results and Section 7 discusses policy simulations. Lastly, Section 8

concludes.

2 Related Literature

2.1 Preventive care is beneficial

In seminal work by Ehrlich and Becker (1972), preventive care is introduced to the medi-

cal care demand discussion (among economists) as “self-protection” and “self-insurance”.

In their model, there are three ways an individual can respond to health uncertainty:

market insurance, self-protection and self-insurance. Self-protection encompasses pri-

mary preventive care (e.g., flu vaccine) as it can reduce the probabilities of bad health

states; while self-insurance captures secondary primary care (e.g., diabetes and cancer

screening) as it reduces the size of the loss in the bad states. Their theoretical model

suggests that, because market insurance and self-insurance are substitutes, a moral haz-

ard problem may arise if the price of market insurance is not negatively related to the
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amount spent on protection. Some studies discuss the optimal coverage for and benefits

of preventive care. Howard (2005) characterizes the theoretical relationship between age

and cost-effectiveness of early detections. He claims that there is always an age beyond

which the costs of early detection outweigh the benefits. However, his model assumes

that individuals are risk neutral and that screening occurs every period, and it abstracts

away from psychological factors. Herring (2010) claims that the enrollee turnover among

health insurers explains the suboptimal provision of coverage of preventive health care:

the financial benefits of preventive care accrue in the future and some of the benefits to

an insurer will be lost when the enrollees change health plans. Mroz et al. (2016) pro-

vide empirical evidence that screening tests and early diagnoses of type-2 diabetes are

beneficial. They estimate a dynamic multistage duration model that includes partial ob-

servability of the disease stage, unmeasured heterogeneity, and the endogenous timing of

diabetes screening. The results indicate that earlier diagnosis of diabetes delays the onset

of lower extremity complications (LECs) and amputation. For example, a one year delay

in the diagnosis of diabetes increases the probability that an individual will have LECs

five years later by 11 percent and the probability of transition to high severity LECs by

27 percent. Furthermore, their policy simulation estimates that if Medicare were to cover

no more than two visits per year for healthy individuals, over a 15-year span it would save

Medicare $476 per beneficiary at a cost of only 0.004 years of life per person. Preventive

testing can have negative externalities. For example, Oster et al. (2010) find empirical

evidence of adverse selection in the long-term care insurance market due to increased

private information by genetic testing.

2.2 Demand for preventive testing

Most studies find that health insurance coverage increases the utilization of preventive

care. Finkelstein et al. (2012) explore the exogenous cost shock of the Oregon Medi-

caid lottery and find that insurance is associated with a significant and large increase in

compliance with recommended preventive care: 20 (15) percent increase in the probabil-

ity of ever having blood cholesterol (sugar) checked, and 60 (45) percent increase in the

probability of having a mammogram (pap test) within the past year. Sabik and Bradley

(2016) employ a quasi-experiment framework to analyze the effect of the expansion to

near-universal health insurance coverage in Massachusetts on breast and cervical cancer

screening. They find a significant but mild increase in the screening rates: a 4 to 5 per-

cent increase in mammogram and a 6 to 7 percent increase in pap tests annually. Even

with near-universal health insurance, the testing rates are not close to universal: 77.8

percent for mammogram and 75.1 percent for pap test annually. Newhouse et al. (1993)
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examine the RAND Health Insurance Experiment and find that consumers are not very

sensitive to price of preventive care: the price elasticity of demand for preventive care

is in the range of -0.17 to -0.43. Simon et al. (2016) explore the 2014 Affordable Care

Act (ACA) Medicaid expansions and find mixed effects on a variety of preventive care

behaviors. There is an increased use of dental visits, mammogram, and cancer screening,

but no detectable change for flu shots, HIV tests, or pap tests. Pagán et al. (2007) also

find that uninsured adults are less likely to undertake screening for high cholesterol and

diabetes in Mexico.

Besides health insurance coverage, some other factors also influence the demand for

preventive testing, such as availability of treatment, information, and disutility from the

test. Okeke et al. (2013) conduct a field experiment in Nigeria and find that women who

randomly receive a cervical cancer treatment subsidy are 4 percentage points more likely

to take up the screening test. B́ıró (2013) analyzes the breast cancer screening behavior of

women aged 50-64 in the UK. She models the screening decision as an inter-temporal deci-

sion about whether to attend a due screening in a 3-year period and considers three factors

influencing the screening attendance: the disutility of screening, the effect of screening

on survival probability, and the discount factor. The results indicate forward-looking be-

havior, but education differences in mammography attendance are mainly due to lower

disutilty of screening among higher educated women rather than different time prefer-

ences. Carrieri and Bilger (2013) investigate the under-usage of preventive care in Italy

and find that general practitioners play a minor role, while non-monetary barriers (i.e.,

geographic and organizational barriers) and health beliefs and knowledge are strong deter-

minants. The effect of information is ambiguous. Jacobsen and Jacobsen (2011) evaluate

the effect of National Breast Cancer Awareness Month (NBCAM) on breast screening

behavior. They find that the NBCAM has significant and positive effects on diagnosis of

breast cancer, which is used as a proxy for screening behavior. Rapp (2014) finds that

the presence of Alzheimer’s disease in the family, which provides good information about

the disease, actually slows diagnosis of Alzheimer’s disease.

2.3 Some people are information avoidant

There is some empirical evidence to indicate that people are health information avoidant,

which means that they do not take the screening tests even when the tests are free and very

accurate. Facione (1993) discovers that 34 percent of women with breast cancer symptoms

delay seeking help for three or more months. Even more puzzling is the evidence that

patients who seem to have more to gain from visiting the doctor are sometimes less likely

to go. Caplan (1994) reports that women whose breast cancer symptoms are getting
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worse delay longer in seeing a professional than those whose symptoms are steady or

disappearing. Lerman et al. (1996) find that 40 percent of high-risk patients who are

offered a test for genetic susceptibility to breast and ovarian cancer declined the test. A

similar study by Lerman et al. (2004) on a type of colon cancer discovers that 57 percent

of high-risk individuals declined to test. Thornton (2008) conducts an experiment in rural

Malawi and finds that only 34 percent of the participants without a monetary incentive

learned their HIV results. Inspired by the empirical evidence, some studies have begun

to focus on health anxiety in particular. A recent behavioral experiment by Ganguly and

Tasoff (2016) finds evidence of health anxiety. Among college students who have already

had blood collected, those who do not want to know if they have a Sexually Transmitted

Disease (STD) must pay $10 to avoid having their blood tested. Results show that 15

percent of students are willing to pay to avoid the test and the top reason is that “it will

cause me unnecessary stress or anxiety if I test positive”. Wu (2003), using the HRS and

MEPS data, finds that self-reported health status is positively and significantly associated

with having a flu shot, but negatively associated with having a pap smear, breast exam,

mammogram and prostate check. The negative correlation between health status and

screening tests may be due to fear or anxiety associated with learning health information

because those who are more pessimistic are less likely to do those tests.

2.4 Literature with belief-dependent utility

This study is also closely related to a growing amount of theoretical literature that in-

corporates behavioral and emotional factors using belief-dependent utility. It is common

in modern economics to assume that humans have unlimited cognitive ability to make

optimal decisions. Thus, the value of information exactly equals the extent to which it

improves decisionmaking and it cannot be negative (Bénabou and Tirole, 2016). However,

often times, human decisionmaking involves a combination of emotions and limited cog-

nitive ability. As Schelling (1988) describes, the mind is a consuming organ. Information

may have both instrumental and direct value through belief-dependent utility and, there-

fore, lead to information avoidance. Bénabou and Tirole (2016), Gino et al. (2016), and

Epley and Gilovich (2016) provide good summaries and explanations about motivated

belief and reasoning. They emphasize that beliefs often contain important psychological

value. Thus, people tend to manipulate their collection and processing of information in

ways that depart from strict Bayesian inference, trading off the affective value of belief

distortion against the costly mistakes they may induce.

The motivation for motivated belief is twofold. First, belief has instrumental value; for

example, an individual prefers to hold a distorted belief to solve a self-control problem.
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Second, belief can have direct utility through anticipatory utility, which means agents’ ex-

perience feelings of anticipation prior to the resolution of uncertainty into utility (Caplin

and Leahy, 2001). Motivated belief can be formed by motivated collection (e.g., attor-

neys collect evidence to support their own side), motivated avoidance (e.g., heath anxiety

prevents people from taking tests), reality denial, and self-signaling. Golman et al. (2016)

provide a summary of explanations for information avoidance. They categorize the reasons

into two types: hedonically-driven information avoidance, which includes reasons such as

anxiety, optimism maintenance, and belief investment; and strategically-driven informa-

tion avoidance, which includes resisting temptation, motivation maintenance, save it for

later, etc. Karlsson et al. (2009) model the ostrich effect, which means that individuals

regulate the impact of good and bad news on their utility by how intently they attend to

the news. They use the fact that investors are less likely to check their portfolios in down

and flat markets than in up markets as empirical evidence of the ostrich effect.

Some studies apply these theoretical models and focus on patient behavior. Kőszegi

(2003) extends the Caplin and Leahy (2001) model to analyze health anxiety and patient

behavior. The main idea is that people can be “information averse” or “information

loving” depending on the shape of their utility functions. An information averse patient

prefers not to see a doctor, even at the cost of better treatment with accurate information.

His model implies that health anxiety is more likely to keep patients away from seeking

help in more serious cases. Oster et al. (2013) explore the decision to undergo genetic

testing for Huntington Disease. In their sample, fewer than 10 percent of individuals at

risk for the disease actually pursue predictive testing during the 10-year study period.

Furthermore, they find that individuals who are uncertain always behave identically to

those who are not carriers of the disease gene. They suggest an optimal expectation

model (Brunnermeier and Parker, 2005), in which individuals get utility directly from

beliefs about the future and can manipulate their beliefs if not tested, to explain the

behaviors. Caplin and Eliaz (2003) develop a theoretical model that embodies health

anxiety as an additional cost of taking an AIDS test and design a mechanism to improve

testing and slow the spread of the disease. Fang and Wang (2015) extend the semi-

parametric estimation method for a discrete choice model to the setting of hyperbolic

discounting time preference. Empirically, they find evidence for both present bias and

naivety for the mammography screening.
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3 Theoretical Motivation

Before presenting a detailed dynamic stochastic model, I use a 2-period model to describe

the demand for diagnostic testing in a simplified environment.

3.1 Model setup

Consider a two-period game. At t = 0, nature moves to decide an individual’s state of

the world s ∈ {0, 1}, where s = 1 indicates that the individual has diabetes and s = 0

indicates she does not. The decision maker then evaluates her payoffs and chooses her

behaviors (actions). I describe the components of decisionmaking here.

(1) Information: the decision maker does not observe her true state, s, of the world,

but holds a belief π = E[s] that represents her subjective probability of having diabetes.

(2) Actions:

– A binary screening test choice (b ∈ {0, 1}) at t = 0. If a diabetes screening is

performed (b = 1), the individual knows her true state of the world. Furthermore,

if she is diagnosed, she can receive treatment M ; otherwise she does not know the

state of the world and cannot receive any treatment.

– A binary lifestyle action (a ∈ {0, 1}) at t = 1. The action a = 1 indicates a very

healthy lifestyle (e.g., more exercise, no smoking, no binge drinking, and sugar-less

diet) and a = 0 indicates normal or usual lifestyle.

(3) Payoffs: payoff u(s, a) is realized at t = 2 where

u(0, 0) = 1 no diabetes, normal lifestyle

u(0, 1) = 1− Φ no diabetes, very healthy lifestyle

u(1, 0) = −Ω with diabetes, normal lifestyle

u(1, 1) = 0 with diabetes, very healthy lifestyle

I normalize the utility from matched lifestyle choice and the true state of world and as-

sume Φ, Ω and M all lie within [0,1]. That is, the utility of “no diabetes, normal lifestyle”

and “with diabetes, very healthy lifestyle” are normalized to be 1 and 0, respectively; and

the utility from a mismatched lifestyle choice is lower than the matched one. There is a

monetary (and time) cost, c, of taking a screening test.

Lemma 1: If the individual chooses not to test (b = 0), her optimal lifestyle choice

(a) is:
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a∗ = 0 if π < Φ
Ω+Φ

a∗ = 1 if π ≥ Φ
Ω+Φ

(The proof is shown in Appendix A.)

Let a∗ be the optimal lifestyle given π as shown in Lemma 1. Therefore, the expected

value of not taking a test, V b(π) where b = 0, is:

V 0(π) = πu(1, a∗) + (1− π)u(0, a∗)

=

1− π(1 + Ω) if π < Φ
Ω+Φ

(1− π)(1− Φ) if π ≥ Φ
Ω+Φ

(1)

I assume that, if an individual takes a test and finds out that she has diabetes, she

will choose a healthy lifestyle as u(1, 1) > u(1, 0); if she finds out that she does not have

diabetes, she will choose a normal lifestyle given u(0, 0) > u(0, 1). Hence, the value of

taking a screening test (b = 1) is:

V 1(π) = π(u(1, 1) +M) + (1− π)u(0, 0)

= 1− π(1−M)
(2)

The values of the testing alternatives are depicted in Figure 1.

Figure 1: Value of (Not) Taking A Test

Therefore, the marginal benefit from taking a screening test is:

MB = V 1(π)− V 0(π)

=

π(M + Ω) if π < Φ
Ω+Φ

π(M − Φ) + Φ if π ≥ Φ
Ω+Φ

(3)
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The marginal cost of taking a screening test is MC = c. The individual decides to take

a screening test or not according to the marginal benefit and marginal cost as shown in

Figure 2.

Figure 2: Marginal Benefit and Marginal Cost of Taking A Test

Using this framework and allowing the marginal cost to be random, I simulate testing

patterns under different scenarios.

Scenario 1: (baseline scenario) information value only

Let’s begin with the baseline scenario, when there is only information value associated

with taking a screening test. That is, the individual chooses to take a test only because

she can know the state of world and then make the optimal lifestyle decisions. There is

no treatment even when the individual is diagnosed with diabetes. For this case, Lemma

1 still holds. The individual chooses to take a test if and only if MB −MC ≥ 0:

MB −MC = V 1(π)− V 0(π)−MC

= 1− π − V 0(π)− c

=

πΩ− c if π < Φ
Ω+Φ

−πΦ + Φ− c if π ≥ Φ
Ω+Φ

(4)

I assume Φ = 0.55 and Ω = 0.45.4 The value of π is drawn from a normal distribution

with mean 0.5 and variance 0.3. Values smaller than 0 or larger than 1 are replaced with

the boundary values (i.e., 0 and 1). The cost of taking a test is drawn from a normal

4According to the theoretical model and the simulation technique, different values of Φ and Ω will
only change the cutoff value of π at which we observe the highest rate of testing.
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distribution with mean 0 and variance 0.5.5 If MB −MC ≥ 0, the individual takes a

screening test, otherwise she does not. The simulated testing pattern for N=1,000,000

individuals is shown in Figure 3. The concave testing pattern indicates that the individuals

with beliefs closer to π = Φ
Ω+Φ

enjoy larger information value. People with π close to 0 and

1 have only a small probability of making a mistake when choosing an optimal lifestyle,

thus the information value of a test is small to them.

Figure 3: Testing Rate Using Model with Information Value only, Φ = 0.55, Ω = 0.45
and N=1,000,000

3.2 Scenario 2: information and treatment value

Here, I include the treatment value associated with taking a screening test. I assume

M = 0.45 and re-do the simulation to generate a testing pattern as shown in Figure 4.

Different from the baseline scenario, the testing rate of individuals with π larger than

the cutoff value remains constant instead of decreasing. This is because, for this group

of people, the decreasing information value of testing is compensated by the increasing

expected treatment value.

To examine whether my theoretical model captures individuals’ behaviors and explains

what we observe in the data, I compare the simulated testing behaviors from these two

scenarios to the ones we observe in the Health and Retirement Study (HRS) data. Ideally,

I want to plot the testing behavior along with the individual’s subjective belief of having

diabetes. However, I cannot observe this belief information in the data. Therefore,

instead, I use an individual’s self-reported health status as the measure of subjective

belief of having diabetes (π). As we observe in Figure 5, the testing rate increases at

5I do not restrict the cost to be positive in the current simulation. That is, an individual may get
more value from a test in addition to the information value.
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Figure 4: Testing Rate Using Model with Information and Treatment Value, Φ = 0.55,
Ω = 0.45, M = 0.45 and N=1,000,000

lower values of π and remains constant afterward. This shape is almost identical to the

one I simulated for the scenario with both information and treatment value, indicating

that the theoretical model with information and treatment value captures individuals’

behavior well.

Figure 5: Blood Sugar Test Rate by Self-reported Health Status among Undiagnosed
Individuals

But, are the information and treatment values enough to explain the testing behavior?

If we divide people in the HRS sample into two groups based on their pessimism levels,

we observe that their testing rates are different conditional on self-reported health status
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(Figure 6). According to our model, conditional on the subjective probability π, an indi-

vidual’s personality (i.e., pessimism) should not affect the information or treatment value

of the test. This testing pattern indicates that there is something missing in our model to

explain the different testing behaviors among people with different personalities. Accord-

ing to the theoretical literature, pessimistic individuals, who are more likely to anticipate

a bad result, are more likely to suffer from health anxiety. The different testing behavior

we observe in the figure by people with different levels of pessimism may be explained

after including health anxiety in our model. To keep a parsimonious specification, health

anxiety is modeled as an individual-specific characteristic instead of a function of π as in

Caplin and Eliaz (2003) or a function of any other variables. The fact that the difference

in testing rates between the two groups is fairly constant across the self-reported health

status also supports my assumption that health anxiety is not a function of π.

Figure 6: Blood Sugar Test Rate by Self-reported Health Status and Pessimism Level
among Undiagnosed Individuals

3.3 Scenario 3: information and treatment value with health

anxiety

Finally, I present a model that includes health anxiety as an individual-specific additional

cost of taking a test. Alternative theoretical models to explain the behavior of information

avoidance are provided in Appendix B. In this model, there are two types of individuals,

those who are health anxious and those who are not. Health anxious individuals have an

additional cost (A) of taking the screening test due to anticipation of a bad test result:
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MCA = c+A. The marginal value of taking a screening test for health anxious individuals

is:

MB −MCA = V 1(π)− V 0(π)−MCA

= 1− π − V 0(π)− c− A

=

π(M + Ω)− c− A if π < Φ
Ω+Φ

π(M − Φ) + Φ− c− A if π ≥ Φ
Ω+Φ

(5)

The marginal value of taking a screening test for non health anxious individuals is the

same as that in scenario 2. Assuming that A = 0.1, we can simulate the testing pattern

as shown in Figure 7.

Figure 7: Testing Rate Using Model with Information and Treatment Value and Health
Anxiety, Φ = 0.55, Ω = 0.45, M = 0.45, A = 0.1 and N=1,000,000

4 Data

Although the different testing behavior between people with different pessimism levels is

likely to imply the existence of health anxiety, we have not ruled out many other reasons in

this simplified setting. People with different personalities could make different life-course

decisions such as employment or lifestyle behaviors that lead to different testing behav-

iors. For example, if less pessimistic individuals are more likely to retire early, then they

may have a higher testing rate because they are less constrained by time. Unobservable

heterogeneity could be another reason. Furthermore, if we consider dynamics, pessimistic

individuals may update their beliefs differently and then have different testing behaviors.

To examine the effect of health anxiety on the demand for diagnostic testing while

16



accounting for all the dynamic and simultaneous contributors, I jointly estimate a set

of approximation equations derived from an individual’s optimization problem. In the

next section, I introduce the dynamic optimization problem and the empirical estimation

method in detail.

In order to measure the empirical contribution of the various contributors to an in-

dividual’s observed testing behavior, detailed data are required. The primary data from

the Health and Retirement Study (HRS) and its linked biomarker data provide the most

comprehensive set of variables and appropriate sample size for the empirical investigation.

The HRS consists of a longitudinal panel of approximately 28,000 people in the U.S., with

biennial observations from 1992 to 2014. The HRS surveys older adults about their physi-

cal and mental health, insurance coverage, financial information, family support systems,

work status, and retirement planning by in-depth telephone interview.6 New cohorts of

respondents enter the survey every six years.7 In addition to respondents from eligible

birth years, the survey also interviews the spouses of married respondents or the partner

of a respondent, regardless of age.

An important data source for my study is the HRS linked biomarker data. In 2006,

HRS initiated an Enhanced Face-to-Face Interview (EFTF), which includes a set of phys-

ical performance tests, anthropometric measurements, blood and saliva samples, and a

self-administered questionnaire on psychosocial topics (the Leave-Behind). The blood

and saliva samples are used to evaluate biomarkers in the HRS: saliva is used for DNA

extraction and blood is used to measure a range of other biomarkers. A random half of

the 2006 sample was selected for the EFTF interview and the other half was selected in

2008. In 2010, the first half was EFTF interviewed again, and in 2012 the second half was

interviewed for a second time.8 This survey method creates a four-year interval between

6Health and Retirement Study Website: http://hrsonline.isr.umich.edu/?_ga=1.174674465.

2097313034.1455133775
7The earliest sample cohorts include the “HRS” sample, who were born between 1931 and 1941 (i.e.,

51-61 years old at the beginning of the survey) and the “Asset and Health Dynamics among the Oldest
Old (AHEAD)” sample, who were born earlier than 1924 (i.e., older than 68 in the first interview). In
1998, the HRS recruited two new sample cohorts: those born between 1924-1930 (CODA, Children of the
Depression Era), and those born between 1942-1947 (WB, War Babies). In 2004, a sample born between
1948-1953 (EBB, Early Baby Boomer) was included. In 2010, HRS brought in a new sample cohort born
between 1954-1959 (MBB, Middle Baby Boomer). In 2016, HRS started interviewing a sample cohort
born between 1960-1965 (LBB, Late Baby Boomer).

8Similarly, new sample cohort households in 2010 were randomly assigned into one of these two groups.
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the biomarker collection.9 In the four waves of biomarker sample collection, HRS collected

information on five biomarkers: total and HDL cholesterol (indicators of lipid levels), Gly-

cosylated hemoglobin (HbA1c, an indicator of glycemic or glucose control over the past

2-3 months), C-reactive protein (CRP, a general marker of systemic inflammation), and

Cystatin C (an indicator of kidney functioning).

4.1 Description of Sample

Constrained by the availability of blood sugar test information, I use data spanning years

2004 to 2012. Of the 28,034 individuals and 98,402 person-wave observations, I exclude

observations with missing values for some key variables (10.1 percent). To estimate the

dynamic model, I retain respondents who have at least two waves of survey information,

reducing the estimation sample to 21,541 respondents with 77,881 person-wave observa-

tions. The distribution of the number of observed waves is detailed in Table 1.

Table 1: Distribution of research sample by year and waves

# Observations # Respondents # Death # Attrition

# Respondents in 2004 14,586 14,586 0 0
# Respondents in 2006 15,484 15,484 823 1,060
# Respondents in 2008 14,522 14,522 986 1,175
# Respondents in 2010 17,497 17,497 688 1,017
# Respondents in 2012 15,792 15,792 0 0

Sample with 5 waves 46,805 9,361 0 0
Sample with 4 waves 7,808 1,952 576 807
Sample with 3 waves 8,436 2,812 960 1,126
Sample with 2 waves 14,832 7,416 961 1,319

Estimation Sample 77,881 21,541 2,497 3,252

Key information

My empirical investigation of the contributors to preventive testing behavior is applied

to blood sugar screening and diabetes risks. The HRS provides important information

9In 2006, the blood sample consent rate was 83%, the completion rate, conditional on consent, was
97%, and the overall completion rate was 81%. In 2008, the blood sample consent rate was 87%, the
completion rate, conditional on consent, was 100%, and the overall completion rate of 87%. In 2010,
the blood sample consent rate was 85%, the completion rate, conditional on consent, was 99%, and the
overall completion rate was 84%. In 2012, the blood sample consent rate was 87%, the completion rate,
conditional on consent, was 99%, and the overall completion rate of 86%.
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necessary for assessing an individual’s probability of having a blood sugar test, including

the number of doctor visits and nights of hospitalization, blood sugar testing and test

results. The summary statistics for the key variables are in Table 2.

First, I use the blood sugar test information from the HRS survey. In the 2004-2012

surveys, the individuals who are not diagnosed with diabetes are asked the question “Since

the previous interview, have you had a blood test for your blood sugar?” For respondents

with diabetes, this question is skipped in the survey as individuals with diabetes are

instructed to regularly monitor their blood sugar levels. Among the undiagnosed person-

wave observations, the average blood sugar test rate in a two-year period is 0.827. I also

observe the self-reported diagnosis outcome if the individual is diagnosed with diabetes

from the diabetes stage questions in HRS: “Has a doctor ever told you that you have

diabetes or high blood sugar?”, “In order to treat or control your diabetes, are you now

taking medication that you swallow?” and “Are you now using insulin shots or a pump?”.

The diabetes stages show that 79 percent of person-wave observations are not diagnosed

with diabetes, 3.2 percent are diagnosed with diabetes but do not have any medical

treatment, 12.9 percent are diagnosed with diabetes and take some oral medications, and

5 percent are diagnosed with diabetes and treated with insulin shots.

I observe an individual’s true A1c value from the HRS linked bio-marker data set

every four years. Among the observed values, the average A1c is 5.884. Based on medical

guidelines, I define those with A1c values lower than 5.7 to have normal levels, those with

A1c values between 5.7 and 6.4 to be pre-diabetic, and those with A1c values higher than

6.4 to be diabetic. Accordingly, 55.4 percent of the non-missing estimation sample have

A1c readings in the normal range, 27.9 percent have A1c readings in the pre-diabetic

range, and 16.7 percent have A1c readings in the diabetic range.

The average number of doctor visits (over a two-year period) is 10.723 with 7.2 percent

of observations having no doctor visits. Regarding nights in hospitals, 74.4 percent of

person-wave observations have no hospital nights (over a two-year period). Among those

who have any hospital nights, the average number of hospital nights is 8.341.

Lifestyle behaviors

Because diabetes prevention includes lifestyle behaviors, I also desire information on body

mass and nutrition, exercise, smoking, and drinking behaviors (Table 2).

It is widely acknowledged that body mass (or body mass index, BMI) is an important

predictor of diabetes risk (Narayan et al., 2007). In the estimation sample, the average

body mass index value is 28.33, with 29.1 percent of observations having normal BMI, 1.5

percent being underweight, 36.8 percent being overweight, and 32.7 percent being obese.
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Unfortunately, I do not observe nutrition (or diet) behavior in the HRS. However, the

diet and nutrition information could potentially be reflected by the BMI evolution after

conditioning on the level of exercise.

In the HRS, exercise information is collected using three questions about the frequen-

cies of vigorous, moderate and mild exercise. The responses include 5 categories: (1)

everyday, (2) more than once a week, (3) once a week, (4) one to three times a month,

and (5) hardly ever or never. I group (1) and (2) as high level, (3) and (4) as low level,

and (5) as never, for each type of exercise. To simplify the exercise level measures, I

construct an aggregate exercise variable based on frequencies of each type of exercise.10

In the sample, 22.9 percent of observations have no exercise, 21.5 percent have mild level

of exercise, 31.5 percent have moderate exercise and 24.2 percent have vigorous exercise.

I also observe smoking and drinking behaviors: 14.1 percent of person-wave observations

are observed to smoke and 11.4 percent are observed to binge drink, which is defined as

having 4 or more drinks in at least one day in the past three months.

Perception of health

Since individuals may make decisions using imperfect information about own health, some

information about the individual’s perception about health is required. I observe the

individual’s self-reported health status and subjective survival probability in the HRS

(Table 2).

The self-reported health status contains five categories: excellent, very good, good,

fair, and poor. Almost a third of observations report good health status, 10.7 percent

report excellent, 30.0 percent report very good, 19.9 percent report fair, and only 7.8

percent report poor. Based on the longevity expectation questions collected by HRS, a

subjective two-year survival probability is calculated for each person-wave observation

using the method in Wang (2014) and Perozek (2008). More details about the method

can be found in Appendix C. The two longevity expectation questions in the HRS are:

(1) “What is the percent chance that you will live to be 75 or more?”; (2) “What is the

percent chance that you will live 10 more years (to be age [85/80/90/95/100] or more)?”

10Specifically, different alternatives are modeled as: no exercise includes low/never mild exercise, nev-
er/low moderate, and never vigorous; mild exercise includes high mild, low/never moderate, low/never
vigorous, and low/never mild, low/never moderate, and low vigorous; moderate exercise includes high-
/low/never mild, high moderate, low/never vigorous; and vigorous exercise includes high/low/never mild,
high/low/never moderate, and high vigorous.
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Employment

Employment behavior also determines income and available time for preventive care. I

observe different employment statuses in the HRS (Table 2). In the estimation sample,

68.6 percent of individual-wave observations are not working, including those who are

retired and those who are unemployed. This high rate of non-employment reflects that a

majority of the individuals in the estimation sample are approaching or past retirement

age. There are 5.6 percent of observations working part-time and 25.7 percent working

full-time.
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Table 2: Summary statistics for endogenous variables

Variable Mean S.D. Min Max

Number of doctor visits (over two years 10.723 19.933 0.000 900.000
Doctor visits: none 0.072 0.258 0.000 1.000
Doctor visit: low (≤ 10) 0.652 0.476 0.000 1.000
Doctor visit: high (> 10) 0.276 0.447 0.000 1.000

Employment: none 0.686 0.464 0.000 1.000
Employment: part-time 0.056 0.230 0.000 1.000
Employment: full-time 0.257 0.437 0.000 1.000

Exercise: none 0.229 0.42 0.000 1.000
Exercise: mild 0.215 0.411 0.000 1.000
Exercise: moderate 0.315 0.465 0.000 1.000
Exercise: vigorous 0.242 0.428 0.000 1.000
Smoking 0.141 0.348 0.000 1.000
Binge Drinking 0.114 0.317 0.000 1.000

Blood sugar test (if undiagnosed) 0.827 0.379 0.000 1.000
Diabetes: no diagnosis 0.790 0.408 0.000 1.000
Diabetes: diagnosed without medical treatment 0.032 0.175 0.000 1.000
Diabetes: diagnosed with oral medication 0.129 0.335 0.000 1.000
Diabetes: diagnosed with insulin shot 0.050 0.218 0.000 1.000

Any hospitalization night (over two years) 0.256 0.436 0.000 1.000
Number of hospitalization nights (if any) 8.341 16.475 1.000 609.000

True A1c value (if not missing) 5.884 1.025 3.010 17.170
True A1c: normal (if not missing) 0.554 0.497 0.000 1.000
True A1c: pre-diabetic (if not missing) 0.279 0.448 0.000 1.000
True A1c: diabetic (if not missing) 0.167 0.373 0.000 1.000
True A1c: missing 0.703 0.457 0.000 1.000

BMI value 28.338 6.025 9.765 75.801
BMI: normal 0.291 0.454 0.000 1.000
BMI: underweight 0.015 0.123 0.000 1.000
BMI: overweight 0.368 0.482 0.000 1.000
BMI: obese 0.327 0.469 0.000 1.000

Self-report health: excellent 0.107 0.309 0.000 1.000
Self-report health: very good 0.300 0.458 0.000 1.000
Self-report health: good 0.316 0.465 0.000 1.000
Self-report health: fair 0.199 0.399 0.000 1.000
Self-report health: poor 0.078 0.269 0.000 1.000
Two-year survival probability 0.854 0.222 0.083 1.000
Death 0.032 0.176 0.000 1.000

Personality measures and exogenous characteristics

Lastly, I observe pessimism in the HRS, which is used to approximate health anxiety. Since

the pilot survey in 2004, the HRS has included a psychosocial and lifestyle questionnaire
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in each biennial wave for a rotating random 50 percent of the core panel participants who

complete the EFTF interview. That is, the longitudinal data for personality measures

are available at four-year intervals. To solve this problem, I use the average value of an

individual’s observed personality measures over time to fill in values in all waves. By

doing this, personality measures are treated as time-invariant individual characteristics.

Besides pessimism (6 items, score ranging from 1-6), I also observe some other personality

measures: anxiety (5 items, score ranging from 1-4), and the “Big 5” personality traits

(31 items) that include neuroticism, extroversion, openness, agreeableness, and conscien-

tiousness (all scores ranging from 0-4). More detailed information about the survey items

for each personality measure are in Appendix D. Table 3 depicts the summary statistics

of the personality measures. At the individual level, the average pessimism score is 2.537.

A missing indicator is also created if an individual has a missing value for all personality

measures.

Additionally, I also observe a rich set of the individual’s exogenous characteristics in

HRS (Table 3). In the estimation sample, the average age is 66.806 and about 60 percent

are women. Three quarters are white, 18 percent are African American, and 7 percent are

another race. Regarding education, about 50 percent of individuals have a high-school

degree, 20 percent have no degree and 28 percent have a college or higher degree.
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Table 3: Summary statistics for personality and exogenous variables

Variable Mean S.D. Min Max

Personality variables
Pessimism 2.537 0.922 1.000 6.000
Anxiety 1.587 0.576 1.000 4.000
Neuroticism 2.047 0.592 1.000 4.000
Extroversion 3.184 0.542 1.000 4.000
Openness 2.932 0.542 1.000 4.000
Agreeableness 3.518 0.465 1.000 4.000
Conscientiousness 3.298 0.428 1.000 4.000
Missing personality measures 0.191 0.392 0.000 1.000

Exogenous individual characteristics
Age 66.806 11.153 18.000 109.000
Female 0.587 0.492 0.000 1.000
Race

White 0.751 0.433 0.000 1.000
Black 0.176 0.381 0.000 1.000
Other 0.072 0.260 0.000 1.000

Education
No degree 0.199 0.399 0.000 1.000
High school 0.526 0.499 0.000 1.000
College 0.191 0.393 0.000 1.000
Higher than college 0.084 0.277 0.000 1.000

Marital status
Married 0.619 0.486 0.000 1.000
Partnered 0.040 0.197 0.000 1.000
Separated 0.017 0.13 0.000 1.000
Divorced 0.105 0.306 0.000 1.000
Widowed 0.181 0.385 0.000 1.000
Never married 0.038 0.19 0.000 1.000

Log(household income) 10.460 1.459 0.000 17.910
Census region

Northeast 0.153 0.360 0.000 1.000
Midwest 0.244 0.429 0.000 1.000
Western 0.405 0.491 0.000 1.000
Southern 0.198 0.398 0.000 1.000

Note: Summary statistics for time-invariant variables (i.e., the personality variables, gender, race, and
education) are at the individual level.
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5 Empirical Framework

In this section, I describe the empirical framework I use to examine the effects of many

contributors, including health anxiety, on an individual’s demand for diabetes screening.

Initially, I introduce the timing and notation of an individual’s dynamic decisionmaking

process where, given updated information each period, she evaluates alternative health-

related behaviors and optimally chooses given uncertain health evolution in the future.

The theory provides a framework for deriving optimal demand equations and health pro-

duction functions that form a set of dynamic correlated equations that can be jointly

estimated. Having specified the theoretically-motivated arguments of these equations, I

then discuss the estimation strategy and identification in detail.

5.1 Individual decision-making process

The timing of decisionmaking within a period is depicted in Figure 8. Knowing past

employment and screening behaviors (jt−1 and bt−1), body mass (Bt), and relevant ex-

ogenous information (denoted by the vector Ωt and explained in more detail in section

5.2), an individual enters each period with a revealed true disease status Dt−1 (conditional

on previous testing behaviors), a subjective disease status DS
t , and a subjective two-year

survival probability pt. The underlying disease state is not known by the individual if not

tested. While individuals are unlikely to initiate a diabetes screening test directly (i.e.,

without a doctor visit), a visit to a doctor may result in a recommendation for screening,

which the patient may or may not accept. Because such tests may require a follow up

visit or a blood draw in a different location, a patient may or may not comply with the

recommendation. I allow for the role of physician agency in the individual’s optimization

problem in the following way. Individuals choose the number of doctor visits per period,

dt. If an undiagnosed individual has any doctor visits in this period, she faces a probabil-

ity of getting a blood sugar test, bt, or a diabetes screening. The individual’s true disease

state is revealed if she gets the blood sugar test. That is, the individual’s true disease

becomes her known disease state. If the individual is diagnosed with diabetes stage n

[(Dt = n|bt = 1) and n > 0], she is assumed to receive a stage-specific treatment rn and

to have blood sugar tests in every subsequent period regardless of doctor visits.11 The

individual also faces a probability of hospitalization, ht, in each period.

In addition to choosing the number of doctor visits, an individual also chooses em-

11The assumption of a blood sugar test each period after diagnosis is supported by data. Individuals
diagnosed with diabetes must monitor their blood sugar regularly. Additionally, respondents in the HRS
who have been diagnosed with diabetes are not asked about their blood sugar testing behavior.
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ployment, and other health-related lifestyle behaviors. Employment is modeled because

it impacts the time available for health-producing activities as well as resources for con-

sumption. The employment alternatives are non-employment, part-time employment,

and full-time employment.12 The lifestyle behaviors capture non-medical care inputs

that impact health. I model exercise, smoking, and binge drinking behavior, denoted by

lt = [l1t , l
2
t , l

3
t ]. Nutrition is an important input, but this information is not available in

the HRS data. Nutrition behavior may be reflected by body mass changes conditional on

the level of exercise.

Figure 8: Timing

1 t

{jt−1, bt−1, Bt,Ωt

Dt−1, D
S
t , pt}

dt, jt, and lt chosen

bt observed
and Dt revealed if bt = 1

rn received if Dt = n

ht realized

Bt, Dt, D
S
t+1, pt+1 evolved

{jt, bt, Bt+1,Ωt+1

Dt, D
S
t+1, pt+1}

t + 1 T

In the model, an undiagnosed individual may not receive a blood sugar test for two

reasons: she has a low level of doctor visits and/or she has a low probability of get-

ting a test conditional on the level of doctor visits. Several aspects of the individual’s

optimization problem influence her optimal number of doctor visits each period. These

contributors (and their location in the optimization problem) are: (1) monetary cost of

doctor visits (budget constraint); (2) time cost of doctor visits (time constraint); (3) in-

correct expectations of the productivities of medical care and non-medical care inputs in

disease evolution (health production functions); (4) life expectancy (survival probability

and value function); (5) health anxiety of getting the test (a potential utility cost dis-

tinct from the disutility of illness). Similarly, factors that influence the probability of a

blood sugar test conditional on the number of doctor visits are: (1) monetary cost of tests

(budget constraint); (2) time cost of tests (time constraint); (3) observable individual

characteristics associated with diabetes risk (i.e., body mass and family health)(screening

recommendation/offer); and (4) the individual’s tendency to avoid or refuse a test during

doctor visits (i.e., health anxiety and short life expectancy)(utility and value function).

12An individual choosing not to work may be retired, unemployed, disabled or out of the labor force.
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5.2 Estimable equations

Using the theoretical framework that defines an individual’s optimization problem with

regard to blood sugar testing, I form a set of approximation equations to the discrete

choice behaviors derived from solution to the individual’s optimization problem.13 I jointly

estimate the derived demand equations, the stochastic outcomes, and the production

functions that make up each individual’s per-period contribution to a likelihood function.

The demand equations are functions of the endogenous and exogenous variables known

to the individual at the beginning of each period.14 The health production equations

are functions of the medical and non-medical care behaviors observed during the period.

All equations are allowed to be correlated contemporaneously (i.e., within a period) and

across time through permanent and time-varying unobserved heterogeneity. For each

equation k, the error term is decomposed into three parts: a permanent unobserved

heterogeneity component (µk), a time-varying unobserved heterogeneity component (νkt )

and an idiosyncratic error term (εkt ) where:

ekt = µk + νkt + εkt

The idiosyncratic error terms (εkt ) are assumed to be i.i.d Type-1 Extreme value distributed

for discrete outcome equations and i.i.d normally distributed for continuous outcome

equations. I discuss estimation of the distribution of the first two components in section

5.3. The specification of each equation is summarized in Table A of Appendix E.

5.2.1 Demand Equations

The five demand equations that approximate the five discrete choice behaviors include

the number of doctor visits, employment, and the levels of exercise, smoking, and binge

drinking. To reflect that the individual makes those decisions simultaneously, the demand

equations share the same set of determinants. Specifically, each demand equation is a

function of the individual’s past employment behavior (jt−1), body mass (Bt), exogenous

information (Ωt), the revealed true disease state (Dt−1) entering period t interacted with

the past screening behavior (bt−1), and the subjective disease state (DS
t ) and survival

probability (pt).

The vector of exogenous information (Ωt = {Xt,Wt, Zt, Pt}) includes a vector of in-

13A detailed theoretical model is available from the author but is not specified here because it is not
formally estimated.

14The estimated parameters in the demand equations represent the marginal effects of variables on
the observed discrete choice, and are functions of the underlying primitive parameters in an individual’s
utility, constraints, and expectations that form the decisionmaking problem.
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dividual characteristics (Xt: age, gender, race, education, marital status, log household

income, and residence census region); a vector of personality measures (Wt: pessimism,

anxiety, and the “big 5” personality traits that include neuroticism, extroversion, open-

ness, agreeableness, conscientiousness); indicators of health insurance (ZH
t ) and a vector

of parental mortality variables (ZP
t : indicator of death of the same gender parent, age of

alive same gender parent, age of death of same gender parent); and a vector of regional

characteristics to capture supply side medical care conditions, demand side employment

conditions, and exogenous health determinants (Pt). I detail the variables in the vector

Pt in the identification section.

Level of doctor visits

Individuals choose the number of doctor visits each period. The number of doctor visits

is discretized to reduce the number of alternatives. This discretization also reduces some

measurement error in the data. The cutoff points of the discretization are based on the

mean in the sample: those who have 10 or fewer doctor visits are defined to have a low

level of visits and those who have more than 10 doctor visits are defined to have a high

level of visits. In the sample, 65.2 percent of person-wave observations have a low level

of doctor visits, 27.6 percent have a high level of doctor visits, and 7.2 percent have no

doctor visits over the period of two years (Table 2). To account for the possibility of

observing an undiagnosed individual who has no doctor visits but reports having a blood

sugar test, the alternative of “no doctor visit” is further discretized to “no doctor visit but

test” and “no doctor visit and no test”.15 Because the alternative “no doctor visit and

no test” is not available for individuals who have already been diagnosed with diabetes, I

estimate the doctor visit equation among individuals with diagnosed diabetes separately.

The determinants of the two equations are the same.

For an individual who is not previously diagnosed with diabetes, the probabilities

of choosing no doctor visit and no test (dt = 0|Dt−1 = 0), or no doctor visit but test

(dt = 1|Dt−1 = 0), or a high level of doctor visits (dt = 3|Dt−1 = 0) relative to choosing

a low level of doctor visits (dt = 2|Dt−1 = 0) are:

ln[
p(dt = d|Dt−1 = 0)

p(dt = 2|Dt−1 = 0)
] = fDU

d (jt−1, Dt−1 ∗ bt−1, D
S
t , Bt, pt, Xt,Wt, Zt, Pt,µ

DU

, νD
U

t ),

d = 0, 1, 3

(6)

15These tests might be performed at pharmacies, during hospital stays, and in labs without a doctor
visit.
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For an individual who has been diagnosed with diabetes, the probabilities of choosing no

doctor visit (dt = 1|Dt−1 > 0) or a high level of doctor visits (dt = 3|Dt−1 > 0) relative

to choosing a low level of doctor visits (dt = 2|Dt−1 > 0) are:

ln[
p(dt = d|Dt−1 > 0)

p(dt = 2|Dt−1 > 0)
] = fDD

d (jt−1, Dt−1 ∗ bt−1, D
S
t , Bt, pt, Xt,Wt, Zt, Pt,µ

DD

, νD
D

t ),

d = 1, 3

(7)

Employment

The probabilities of being employed part-time (jt = 1) or full-time (jt = 2) relative to

being non-employed (i.e., either retired or unemployed) are:

ln[
p(jt = j)

p(jt = 0)
] = fJ

j (jt−1, Dt−1 ∗ bt−1, D
S
t , Bt, pt, Xt,Wt, Zt, Pt, µ

J , νJt ) , j = 1, 2 (8)

Lifestyle behaviors

Relative to the probability of choosing moderate amount of exercise (`1
t = 2), the proba-

bility of choosing no exercise (`1
t = 0), mild exercise (l1t = 1), or vigorous exercise (`1

t = 3)

are:

ln[
p(`1

t = `)

p(`1
t = 2)

] = fL1(jt−1, Dt−1 ∗ bt−1, D
S
t , Bt, pt, Xt,Wt, Zt, Pt, µ

L1

, νL
1

t ) , ` = 0, 1, 3 (9)

The probability of choosing to smoke (`2
t = 1) relative to non-smoking (`2 = 0) is:

ln[
p(`2

t = 1)

p(`2
t = 0)

] = fL2(jt−1, Dt−1 ∗ bt−1, D
S
t , Bt, pt, Xt,Wt, Zt, Pt, µ

L2

, νL
2

t ) (10)

The probability of binge drinking (`3
t = 1) relative to not binge drinking (`3

t = 0) is:

ln[
p(`3

t = 1)

p(`3
t = 0)

] = fL3(jt−1, Dt−1 ∗ bt−1, D
S
t , Bt, pt, Xt,Wt, Zt, Pt, µ

L3

, νL
3

t ) (11)

5.2.2 Stochastic outcomes

Following the timing of the individual’s decisionmaking process, whether or not the indi-

vidual had a blood sugar test and nights in the hospital are realized sequentially after the

individual has chosen doctor visits, employment, and lifestyle behaviors. Hence, current
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period behaviors may influence these stochastic realizations. Specifically, the levels of

doctor visits and health-related behaviors in the current period affect both the probabil-

ity of having a blood sugar test (among undiagnosed individuals with at least one doctor

visit) and the number of hospital nights.

Blood sugar test

If the individual has not been diagnosed with diabetes and has at least one doctor visit,

her probability of not having a blood sugar test (bt = 0) relative to the probability of

having a blood sugar test (bt = 1) is:

ln[
p(bt = 0|Dt−1 = 0, dt > 1)

p(bt = 1|Dt−1 = 0, dt > 1)
] = fPB(dt, jt, `t, D

S
t , Bt, pt, Xt,Wt, Zt, P

M
t µPB, νPB

t )

(12)

where dt, jt, and `t are the levels of doctor visits, employment, and health-related lifestyle

behaviors (i.e., exercise, smoking, and binge drinking), respectively. In addition to own

subjective disease state (DS
t ) and body mass (Bt), the same gender parent’s mortality

measures (ZP
t ) are included to approximate family health history, which is an important

guideline for physician’s initial suggestion/prescription of blood sugar tests. Health insur-

ance (ZH
t ) captures the price of having a diabetes screening for the individual. Regional

medical supply factors (PM
t ) are also included to capture the physician’s role in affecting

an individual’s blood sugar testing behavior. Conditional on the endogenous behaviors,

health states, and other personality measures, the marginal effect of pessimism evaluates

whether pessimistic individuals are more likely to avoid a test due to health anxiety (i.e.,

the additional psychological cost of anticipating a bad result).

If an undiagnosed individual has no doctor visits this period, the probability of blood

sugar testing is p(bt = 1|Dt = 0, dt ≤ 1) = dt, where dt = 0 or 1 captured by equation 6.

If the individual has been diagnosed with diabetes when entering this period (i.e.,

Dt > 0), the probability of a blood sugar test is one. p(bt = 1|Dt > 0) = 1.

Nights in hospital

Given that three-fourths of the observations in the sample are not hospitalized within

a 2-year period (Table 2), I model the number of hospital nights in two parts. A logit

model is used to estimate the probability of having any hospitalization. The probability
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of having any hospital nights (ht > 0) relative to having no hospital nights (ht = 0) is:

ln[
p(ht > 0)

p(ht = 0)
] = fH(dt, jt, `t, Dt ∗ bt, DS

t , Bt, Xt, Z
H
t , P

M
t , µH , νHt ) (13)

For those who have non-zero hospital nights, an equation for the number of hospital nights

is specified as

ht|ht > 0 = fH(dt, jt, `t, Dt ∗ bt, DS
t , Bt, Xt, Z

H
t , P

M
t , µH , νHt ) (14)

Both equations are functions of current period behaviors, the interaction between a blood

sugar test and revealed true stage of diabetes (Dt ∗ bt), the self-perception of health

(DS
t ), and body mass (Bt) entering the period. The specification includes ZH

t and PM
t to

capture the impacts of price and regional medical care supply factors that may influence

the observed number of nights. An interaction term between the level of doctor visits

and diabetes diagnosis may capture the potential protection effect of doctor visits (i.e.,

catch illness early) or signal health declines not captured by disease state, body mass,

and longevity expectations.

5.2.3 Health production functions

Health evolves from one period to the next. The dynamic health outcomes include blood

sugar levels, body mass evolution, and death.

Blood sugar level

The blood sugar level is measured by readings from an A1c test, also called the hemoglobin

A1c, HbA1c, or glycohemoglobin test in the HRS biomarker data (Table 2). A higher

reading represents a higher blood sugar level (i.e., less healthy). Regardless of whether

an individual learns her true disease state (by taking a blood sugar test), her blood sugar

level is evolving. The HRS data provide the A1c values of individuals for whom a blood

sample is collected, independent of doctor visits and observed diabetes screening behav-

iors. That is, the entire randomly-selected sample receives a test at some point. With

these data, I can explain A1c value transitions as individuals age, which is unobservable

to the individuals but governs their true disease transitions. In other words, this pro-

cess does not enter an individual’s optimization problem directly, but it allows me, as

the econometrician, to capture the underlying health production and therefore explain

observed health outcomes better.

I allow blood sugar levels (At+1) to depend on an individual’s period t behaviors and
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hospitalization to capture medical and non-medical inputs, and the previously known

diabetes state (Dt ∗ bt) to capture persistence as well the medical treatment an individual

receives if she is diagnosed with diabetes. It also depends on the self-reported health

status (DS
t ) since this measure has been shown to correlate well with the true disease state,

which is unknown if undiagnosed. Blood sugar level also depends on body mass, which is

a good predictor of diabetes, and the same gender parent’s mortality measures (ZP
t ) to

approximate the genetic inheritance from the parent that predict diabetes. I estimate the

blood sugar production equations using observations from the research sample for which

it is observed and I am able to use this estimated process to simulate A1c values for

all observations when evaluating marginal effects of interest in the dynamic simulations.

Specifically, determinants of A1c are

At+1 = fA(dt, jt, `t, ht, Dt ∗ bt, DS
t , Bt, Xt, Z

P
t , µ

A, νAt ) (15)

Body mass

Body mass is measured using a body mass index (BMI) that depends on weight and

height.16 The evolution of BMI depends on medical care inputs (dt and ht) as well as

non-medical care health behaviors (`t). The lagged BMI value is included to capture the

persistence of body mass evolution. In the empirical specification, I include interaction

terms between the lagged BMI category (i.e., underweight, normal, overweight and obese)

and the continuous value of lagged BMI to allow for persistence in a non-linear way.17 The

revealed true disease state interacted with diabetes screening behavior is included for two

reasons. First, it aims to examine whether individuals respond to the health information

gained from taking a test. That is, the interaction term evaluates whether the individual

who takes a test responds to the information and produces BMI differently through the

unobserved nutrition/diet behavior. Second, since some reports show that weight is sen-

sitive to insulin level in blood and weight gain is not an uncommon phenomenon among

people using insulin as a treatment, the revealed true disease state, which defines the

type of treatments the individual receives (if diagnosed with diabetes), captures this ef-

fect. Another interaction term between screening behavior and lagged BMI is included to

capture the heterogeneous effects of no test on BMI evolution. I also include employment

behavior (jt) and subjective 2-year survival probability (pt) that are likely to influence

the unobserved dieting behavior and thus the BMI evolution. Finally, the production of

16The BMI is defined as the weight (kg) divided by the square of height (m2).
17The BMI categories are defined as: those with BMI values lower than 18.5 are underweight; those with

BMI values between 18.5 and 25 are normal; those with BMI values between 25 and 30 are overweight,
and those with BMI values larger than 30 are obese.
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BMI also depends on regional health-related price and supply side variables (explained in

more details in section 5.3) and unobserved heterogeneity. That is,

Bt+1 = fB(dt, jt, `t, ht, Dt ∗ bt, DS
t , Bt, pt, Xt, P

H
t , µ

B, νBt ) (16)

Death

I model death as another endogenous health outcome which may result after a decline

in health or as a health shock. Consequently, it depends on the individual’s histories of

past health events and outcomes. The outcome of death is observed at the end of the

period, after the updating or realization of all other health outcomes. As a result, the

probability of death is a function of an individual’s updated revealed true disease state,

subjective health status and survival probability, hospital nights, body mass, parental

mortality measures (to capture the inherited genetics about life longevity from the same

gender parent), regional medical care-related price and supply side factors, an individual’s

exogenous characteristics, and unobserved heterogeneity. The probability of death, ED
t+1 =

1, conditional on being alive this period, ED
t = 0, relative to survival (ED

t+1 = 0), is

ln[
P (ED

t+1 = 1|ED
t = 0)

P (ED
t+1 = 0|ED

t = 0)
] = fED(ht, Dt∗bt, DS

t+1, Bt+1, pt+1, Xt, Z
P
t , P

M
t , µED, νED

t ) (17)

5.2.4 Health expectation processes

Subjective disease state

The subjective disease state is measured by self-reported health status from the HRS data

set. This categorical variable has five response categories (denoted by s): “Excellent”,

“Very Good”, “Good”, “Fair” and “Poor” (Table 2). According to theory, an individual

solves the optimization problem based on her subjective disease state (regardless of the

testing behavior), which might over-estimate or under-estimate the true disease state.

But, once the individual takes a test, her beliefs become “better” or closer to the truth.

Therefore, the evolution of an individual’s self-reported health status should reflect that

the individual incorporates the new information regarding her true disease state once

tested. In the estimated production function, this idea is embodied by the inclusion of

interaction terms between the revealed true disease state, lagged BMI and the blood

sugar test behavior (Dt ∗ bt and Bt ∗ bt). In other words, the interaction terms allow the

individual to update the self-reported health status differently depending on whether or

not she takes a test and the diagnosed stage of diabetes if tested.
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The production of this subjective disease state is a function of behaviors in the current

period, lagged subjective disease state (to capture persistence), BMI, revealed true disease

state, and the subjective survival probability entering in this period. It also depends on

the personality measures, since one’s own self-perception of health is shown to be highly

correlated with own personality traits (Goodwin and Engstrom, 2002). The probabilities

of reporting “excellent” (st+1 = 0), “very good” (st+1 = 1), “fair” (st+1 = 3), or “poor”

(st+1 = 4) health relative to the probability of reporting “good” health (st+1 = 2) are:

ln[
p(DS

t+1 = s)

p(DS
t+1 = 2)

]] = fS(dt, jt, `t, ht, Dt ∗ bt, DS
t , Bt, Bt ∗ bt, pt, Xt,Wt, µ

S, νSt ),

s = 0, 1, 3, 4

(18)

Subjective survival probability

In addition to the subjective disease state, an individual also reports a subjective two-

year survival probability entering each period. This probability is used to capture an

important contributor to why an individual may not take a blood sugar test: it has a

low future payoff due to a short life expectancy. An individual’s subjective two-year

survival probability depends on her chosen health inputs, and her observed or subjective

disease state and body mass in the current period. To reflect the information value of

taking a test on forming the subjective survival probability, an interaction term between

revealed true disease state and the blood sugar testing behavior is included. Furthermore,

interaction terms between the screening test behavior and self-reported health status

and BMI are included in order to allow for heterogeneous effects of information. The

individual’s personality measures, same gender parent’s mortality measures, exogenous

characteristics, and unobserved heterogeneity also influence her formation of subjective

survival probability. The continuous probability value (times 100 and between 0 and 100)

is

pt+1 = fP (dt, jt, `t, ht, Dt ∗ bt, DS
t+1, Bt+1, Xt,Wt, Z

P
t , µ

P , νPt ) (19)

5.3 Estimation Strategy

Having introduced the dynamic equations that capture individual testing behavior, I detail

the estimation method in this subsection. The set of correlated equations also account for

non-random attrition from the survey and initially-observed non-random behaviors and

health outcomes when individuals first enter the data set. Next, I discuss the strategy for
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estimating the correlation across equations as well as identification. Finally, I present the

likelihood function that is estimated via full information maximum likelihood.

5.3.1 Attrition from the survey

Aside from death (which is modeled in the dynamic equations), individuals may attrit

from the research sample. I allow potentially non-random attrition at the end of a period

to depend on observed behaviors and updated health outcomes as well as the permanent

and time-varying unobserved heterogeneity. Conditional on being alive in period t, the

probability of attriting from the sample by the next period (EA
t+1 = 1), relative to the

probability of being in the sample (EA
t+1 = 0) next period is:

ln[
P (EA

t+1 = 1|EA
t = 0)

P (EA
t+1 = 0|EA

t = 0)
] = fEA(ht, Dt ∗ bt, DS

t+1, Bt+1, pt+1, Xt, µ
EA, νEA

t ) (20)

5.3.2 Initial conditions

The research sample includes individuals’ behaviors and health outcomes beginning in

year 2004. These initially-observed behaviors and outcomes cannot be explained using

the dynamic specifications of equations 6-19 because I do not observe information prior

to year 2004. Therefore, I specify static reduced-form equations to account for the non-

random initial behaviors and health outcomes I observe in the data. Specifically, I model

five initial conditions: (1) initial employment status (j0); (2) initial blood sugar level (A1);

(3) initial revealed true disease state interacted with blood sugar test (D0 ∗ b0); (4) initial

subjective disease state (DS
1 ); and (5) initial BMI (B1). The initial condition equations

are functions of exogenous individual characteristics in 2004 (X0), relevant regional price

and supply side variables in 2004 (Z0, P0), and permanent unobserved heterogeneity. The

time-varying regional variables in year 2004 serve as exclusion restrictions because they are

correlated with the initially-observed behaviors and health outcomes, but do not impact

the subsequent behaviors (modeled dynamically) after conditioning on the endogenous

behaviors and health outcomes.

5.3.3 Distribution of unobserved heterogeneity

The full set of 20 equations are correlated across time and across equations through the

permanent unobserved heterogeneity. The time-varying unobserved heterogeneity cap-

tures additional correlation across equations within a time period and is not serially

correlated. The initial condition equations are correlated with other initial equations
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and the dynamic equations through the permanent unobserved heterogeneity. The cor-

relations are achieved through a discrete factor random effect (DFRE) method, where

the unobserved heterogeneity distributions are discretized and their mass points and as-

sociated weights are estimated jointly with other parameters of the likelihood function.

The full information maximum likelihood method (FIML) is used to estimate the pa-

rameters. Specifically, I estimate the mass points of the joint distribution of permanent

unobserved heterogeneity µ = [µDU , µDD, µJ , ...µEi , µEA] and the probability weights, θm,

m = 1, 2, ...,M , as well as the mass points of the joint distribution of time-varying un-

observed heterogeneity νt = [νDU
t , νDD

t , νJt , ..., ν
ED
t , νEA

t ] and the probability weights, φk,

k = 1, 2, ..., K, jointly with other parameters. The number of total permanent (M) and

time-varying (K) unobserved heterogeneity are determined empirically.

The DFRE method was initially suggested by Heckman and Singer (1984) in a single

equation and extended to multiple equations by Mroz and Guilkey (1992) and Mroz

(1999). This method minimizes possible estimation bias without imposing a stronger

assumption about the distributions of the error components. In Monte Carlo simulations,

the DFRE estimator shows reduced bias compared to the assumption of joint normality

when the true distribution of unobserved heterogeneity is not jointly normal and the

DFRE estimator performs as well as the assumption of joint normality when the true

distribution of unobserved heterogeneity is jointly normal (Mroz, 1999).

Compared to a fixed effect method, the DFRE method has several advantages. First,

I can estimate the individual permanent effect without estimating N − 1 additional pa-

rameters where N is the number of individuals in the sample. Second, I do not need

to use differencing, which drops time-invariant explanatory variables from the analysis.

Instead, I can estimate the marginal effects of the time-invariant variables on an indi-

vidual’s behaviors and outcomes. Additionally, I do not need to rely on the ‘switchers’

who have changes in those time-varying variables to identify their marginal effects on an

individual’s behaviors and outcomes.

5.3.4 Identification

Identification of the multiple equation dynamic model is achieved in three ways. First,

theory and the timing of decisionmaking informs specification of the health outcome

equations. For example, subjective health status depends on behaviors chosen in the

period, and are independent of exogenous variables that shift those behaviors. Specifically,

the Z variables and some state-level price variables P impact demand behaviors, but do

not impact health outcomes conditional on the behaviors. Second, the entire history of

the exogenous variables serve to identify behaviors over time. The initial conditions also
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include exogenous time-varying variables that identify these equations. Lastly, functional

form of the equations and a few covariance restrictions on the unobserved heterogeneity

distributions help the identification.

Table 4 summarizes the Z variables and state-level price and supply side variables (P )

that capture supply side medical care conditions, demand side employment conditions,

and exogenous health determinants. The state-level medical care related supply side fac-

tors include hospital beds per 1,000 population, number of total hospitals, total active

physicians per 100,000 population, and health care cost index.18 The first two variables

are from the American Hospital Association (AHA) Annual Survey.19 The state-level to-

tal active physicians per 100,000 population data are collected from the State Physician

Workforce Data Book.20 The state-level health care cost index is obtained from the AC-

CRA Cost of Living Index, which now is known as the Cost of Living Index (COLI) that

measures living cost variation in different areas. The health care cost index measures the

relative price levels for health care related consumer goods and services in a state relative

to the average for all participating places (which equals 100). The state-level unemploy-

ment rate, which is obtained from the Bureau of Labor Statistics, reflects variation in

demand for employment across states and over time.

The state-level health behavior related price variables and exogenous health determi-

nants consist of the price index for fresh food, the prices of beer and wine, the price of

cigarette, and annual average temperature and total precipitation. The price index for

fresh food is calculated as the weighted average price of fresh food items using the ACCRA

Cost of Living Index price data.21 The prices of beer and wine are obtained directly from

the ACCRA price data. The price of cigarette is obtained from Orzechowski and Walker

(2014). The annual average temperature and total precipitation are obtained from the

National Oceanic and Atmospheric Administration (NOAA) National Centers for Envi-

ronmental information. For all the price and supply side variables, two-year averages are

calculated from the annual data.

18The state-level hospital beds per 1,000 population include staffed beds for community hospitals,
which represent 85 percent of all hospitals. The state-level total hospitals are also community hospitals.

19The data are obtained from the Kaiser Family Foundation State Health Facts.
20This information is from the Center for Workforce Studies, Association of American Medical Colleges
21The fresh food items include steak, ground beef, sausage, tuna, whole gallon milk, dozen eggs,

margarine, Parmesan, potatoes, bananas, lettuce, bread, orange juice, coffee, sugar, cereal, sweet peas,
peaches, and cooking oil. I exclude some other food items such as fried chicken, coke, potato chips, and
frozen meals.
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Table 4: Summary statistics of exclusion restriction variables

Variable Mean S.D. Min Max

Z variables
Same gender parent is alive 0.176 0.381 0.000 1.000
Age of alive same gender parent 80.971 7.649 45.000 108.000
Age of deceased same gender parent 72.595 15.188 12.000 110.000
Health insurance

Medicare only 0.199 0.400 0.000 1.000
Medicaid or VA/CHAMPUS only 0.031 0.173 0.000 1.000
Multiple public plans 0.081 0.273 0.000 1.000
Medicare plus private plan 0.274 0.446 0.000 1.000
Medicaid/VA/Multiple public plus private plan 0.024 0.152 0.000 1.000
Employer-provided plan only 0.193 0.395 0.000 1.000
Spouse employer-provided or other private plans 0.114 0.318 0.000 1.000
Long-term care (LTC) only or uninsured 0.073 0.260 0.000 1.000
Health insurance missing 0.011 0.102 0.000 1.000

State level price/supply side factors (P)
Hospital beds per 1,000 population 2.910 0.944 1.700 6.150
Total hospitals 97.155 79.098 6.000 427.000
Total active physicians per 100,000 population 258.630 99.623 171.600 880.600
Health care cost index 102.064 11.494 50.884 164.170
Unemployment rate 6.271 2.156 2.750 13.150
Annual average temperature (F) 52.915 8.998 25.650 78.600
Annual total precipitation (inches) 37.543 14.403 7.640 62.395
Price index for fresh food 2.321 0.240 1.960 3.499
Price of cigarettes ($) 4.216 0.949 2.864 8.017
Price of beer ($) 7.092 0.444 6.220 9.025
Price of wine ($) 6.065 0.775 4.272 8.677

Note: The summary statistics for Z variables are at person-wave observation level (which includes
77,881 person-wave observations) and the summary statistics for state level price variables are at
state-wave level (which includes 255 state-wave observations).

5.3.5 Likelihood function

Unconditional on the unobserved heterogeneity the likelihood function is
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where θm is the probability of type m permanent unobserved heterogeneity and φk is the

probability of type k time-varying unobserved heterogeneity. Pr(·) is the probability of

a behavior or outcome if it is discrete and f(·) represents the density of a behavior or

outcome when it is continuous.

6 Estimation Results

6.1 Data fit

One way to evaluate whether the model captures individuals’ behaviors and health out-

comes well is to compare the simulated values from the estimated data generating process

to those observed in the data. Table 5 displays the summary statistics for the behavior

and health outcome probabilities and values. Most behaviors and health outcomes fit the

observed data very well. I assign the diagnosed stage of diabetes based on the simulated
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A1c value and the empirical probabilities of transitioning to every stage of diabetes. I

over-predict the probability of getting diagnosed with diabetes and the stage of diabetes

with oral medication. This may be because I apply a more strict standard to diagnose

diabetes compared to the one used by physicians.

Table 5: Summary Statistics of Data Fit

Observed Simulated
Variable Mean S.D. Mean S.D.

Level of doctor visits
None 0.069 0.254 0.068 0.251
Low 0.648 0.478 0.646 0.478
High 0.283 0.450 0.287 0.452

Employment
No work 0.719 0.450 0.728 0.445
Part-time 0.051 0.220 0.050 0.218
Full-time 0.230 0.421 0.221 0.415

Lifestyle behavior
Exercise

None 0.240 0.427 0.243 0.429
Mild 0.213 0.409 0.221 0.415
Moderate 0.308 0.462 0.311 0.463
Vigorous 0.239 0.426 0.225 0.418

Smoking 0.130 0.336 0.131 0.338
Binge drinking 0.106 0.308 0.102 0.303

Stochastic outcomes
Blood sugar test (if not diagnosed) 0.827 0.379 0.825 0.380
Probability of any hospitalization night 0.264 0.441 0.265 0.441
Number of hospitalization night (if any) 8.057 13.152 6.869 9.284

Health outcome
A1c value (if not missing) 5.885 1.003 6.144 1.372
Diabetes state

No test 0.139 0.346 0.137 0.343
Test and no diagnosis 0.636 0.481 0.604 0.489
Diagnosed without med treatment 0.034 0.182 0.038 0.191
Diagnosed with oral medication 0.136 0.343 0.160 0.367
Diagnosed with insulin shot 0.055 0.227 0.061 0.239

BMI value 28.374 6.026 28.409 6.029
Underweight 0.016 0.126 0.049 0.216
Normal 0.286 0.452 0.246 0.430
Overweight 0.367 0.482 0.306 0.461
Obese 0.331 0.471 0.399 0.490

Self-report health
Excellent 0.100 0.300 0.084 0.277
Very good 0.305 0.460 0.297 0.457
Good 0.316 0.465 0.344 0.475
Fair 0.199 0.399 0.209 0.406
Poor 0.080 0.271 0.066 0.249

Two-year survival probability 85.491 22.225 84.911 21.206
Death 0.044 0.206 0.039 0.193
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6.2 Estimation results

6.2.1 Determinants of doctor visits

Recall that there are two ways in which an undiagnosed individual can avoid a test:

she may have a low level (or none) doctor visits and/or she may have a low probability

of getting a test conditional on the level of doctor visits. I begin by looking at key

contributors to doctor visit behavior (conditional on not being diagnosed with diabetes).

In the next part, I turn to contributors to having a blood sugar test conditional on having

a visit.

Table 6 reports the simulated contemporaneous marginal effects, which measure the

one-period effects of the specified change on level of doctor visits while holding all other

variables constant.22 The simulations are based on estimation results from the FIML/D-

FRE multiple equation model.23 Tables with the complete estimation results for the level

of doctor visits (i.e., Table A1) and other behaviors and outcomes are in Appendix F.

The simulated marginal effects provide evidence of the channels hypothesized in the

theoretical and empirical framework. First, the monetary and time costs are essential

determinants of doctor visits. Regarding time costs, a higher level of employment leads

to fewer doctor visits. Specifically, for a full-time (part-time) worker, her probability

of choosing a high level of doctor visits is 0.223 (0.229), this probability is 0.6 (3.2)

percentage points (pp) higher if she is part-time (non-) employed for one period, holding

all other variables constant. Likewise, the full-time (part-time) worker’s probability of

no visits decreases by 0.2 (0.3) pp if she is part-time (non-) employed. Monetary costs

are measured by both household income and health insurance variables. Compared to an

individual with a medium level of household income (i.e., $39,132), an individual with the

90th percentile of household income (i.e., $134,000) is more likely to have a high level of

doctor visits by 0.3 pp and less likely to have none doctor visits by 0.7 pp. The doctor

visits behavior is more sensitive to the price of doctor visits, which is measured by an

individual’s health insurance. Specifically, an individual with Medicare is 10.8 pp (85.0

percent) more likely to have a high level of doctor visits and 10.8 pp (or 56.5 percent) less

likely to have none doctor visits than her counterparts with no health insurance. Second,

longevity expectation also affects the doctor visit behavior. An individual who expects a

higher probability of survival for another two years has slightly more doctor visits.

22The calculated marginal effects take into account all moments and interactions that involve the
variable of interest.

23Because the data reveal that a small fraction of individuals with no visits during the period do report
having their blood sugar tested, the dichotomous outcomes for no visits allow for this possibility in the
estimation. The probability and percentage point changes in the “None” doctor visit category take into
account both the dichotomous outcomes for no visits.
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Lastly, we also find pessimism plays a significant role in explaining the level of doctor

visits after modeling many other endogenous factors and the unobserved heterogeneity.

Specifically, the marginal effects suggest that health anxious individuals are more likely

to reduce the number of doctor visits (in order to avoid tests). On average, an individual

with the least health anxiety (measured by the lowest pessimism value) are more likely to

have a high level of visits by 3 pp (or 13.3 percent) and less likely to have no visits by 7.0

pp (or 51.1 percent) than those who are the most health anxious, holding other variables

constant.

To figure out which barrier is more significant for the estimation sample, I also simulate

the contemporaneous marginal effects of lifting each of the barriers for one period on the

doctor visits behavior. That is, I take into account the share of the population who

are currently suffering from each of barriers to evaluate the relative importance of each

barrier. Those marginal effects are reported in the second half of Table 6. Compared

to the baseline situation, the reduction of health insurance barrier has the largest effect

on improving doctor visits. Giving everyone Medicare plus any private health insurance

plan makes the population more likely to have a high level of doctor visits by 3.5 pp and

less likely to have no visits by 3.2 pp. Reduction of health anxiety has the second largest

effect. Specifically, reducing health anxiety to the lowest makes the population more likely

to choose a high level of doctor visits by 0.6 pp and less likely to have no visits by 1.2 pp.

This effect is even larger than increasing everyone’s household income by one standard

deviation (i.e., $581,60.88).
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Table 6: Simulations for the impacts of contributors to doctor visits
(conditional on not having been previousl diagnosed with diabetes)

Contemporaneous Marginal Effects High None

Case 1 Case 2 - Case 1 Case 1 Case 2 - Case 1
Case 1 → Case 2 (Level) (∆pp) (Level) (∆ pp)

Full time → Part time in t-1 0.223 0.6 0.082 −0.2
Part time → No work in t-1 0.229 3.2 0.081 −0.3
HH income medium → 90th percentile 0.250 0.3 0.077 −0.7
No insurance → Medicare 0.127 10.8 0.191 −10.8
Survival probability 50% → 100% 0.245 0.6 0.082 −0.4
Pessimism full effect (highest → lowest) 0.226 3.0 0.137 −7.0

Baseline 0.250 0.079
→ No work 1.1 −0.1
→ HH income 1 S.D. higher 0.3 −0.7
→ Medicare+private plan 3.5 −3.2
→ Survival prob 100 0.2 −0.1
→ Pessimism lowest 0.6 −1.2

N 451,810

Note: I control for all other variables in the estimation (Table A1 in Appendix F) and the simulations
use estimation results from the FIML/DFRE multiple equation model.
Note 2: the medium household income is $39,132 and the 90th percentile household income is $134,000
S.D. of household income is $581,60.88.

6.2.2 Main contributors of blood sugar test

The previous equation captures determinants that explain an individual’s doctor visit

behavior. We now turn to understanding the key contributors to having a blood sugar

test conditional on having a doctor visit. In other words, we measure the effect of the same

determinants on the probability of not having a blood sugar test after conditioning on the

level of doctor visits. The simulated contemporaneous effects for some key variables in the

blood sugar testing equation are shown in Table 7. Direct effects are the effects of change

in a specified variable on the probability of not having a blood sugar test conditional

on having a doctor visit and not having been previously diagnosed with diabetes. Total

effects measure both direct effects of the change in a specified variable on blood sugar

tests as well as the indirect effects of that change on blood sugar tests through doctor

visits and other health behaviors conditional on not having been diagnosed with diabetes.

The simulated marginal effects also support channels hypothesized in the theoretical

and empirical framework. First, the time costs associated with taking a test plays a role.

Compared to being full-time (part-time) employed, a non-employed individual is 0.5 pp

(1.8 pp) or 3 percent (10 percent) less likely to not take a test, holding other variables

constant. The total effect of time costs is slightly larger than direct effect after including

the indirect effect from doctor visits and lifestyle behaviors. Second, the marginal effects
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also indicate the importance of monetary costs associated taking a test, which is reflected

by the impacts of both household income and health insurance (which captures the price

of a test). Compared to an individual with a medium level of household income (i.e.,

$39,132), an individual with a 90th percentile household income (i.e.,$134,000) is less

likely to not have a test by 0.5 pp. An individual with Medicare is 6.1 pp (or 26.9 percent)

less likely to not have a test than an individual with no health insurance. The total effect

of health insurance is much larger after considering its impact on doctor visits. Third, the

life expectancy channel is also significant as individuals with higher subjective two-year

survival probabilities are less likely to avoid the test. For example, the probability of

no test for an individual who holds a 100% 2-year survival probability is 1.5 pp (or 8.6

percent) lower than an individual who holds a 50% survival probability.

Lastly, pessimism plays an important role even after we model the endogeneity of

many important aspects of the problem as well as the unobserved heterogeneity. The

results imply that health anxious individuals are more likely to avoid blood sugar tests

conditional on the level of doctor visits (and many other factors). The measured direct

marginal effect of pessimism indicates that the probability of no blood sugar test for

a least health anxious individual (i.e., with the lowest pessimism value) is 3.8 pp (or

19.6 percent) lower than that of a most health anxious individual (i.e., with the highest

pessimism value), while holding all other variables constant. The total effect of pessimism

is slightly higher when considering its impact on doctor visits and lifestyle behaviors.

I also simulate the contemporaneous marginal effects of lifting each of the barriers for

one period on blood sugar tests to evaluate their relative importance to current population.

Both direct and total effects are reported in the second half of Table 7. The simulation

suggests that the reduction of health anxiety to the lowest (measured by pessimism values)

has the largest direct effect to make people less likely to avoid a test conditional on the

level of doctor visits. It also has the second largest total effect to make people less likely to

not have a test after considering its impact on doctor visits and lifestyle behaviors. This

effect is larger than increasing everyone’s household income by one standard deviation

(i.e., $581,60.88).

44



Table 7: Simulations for the impact of reductions in barriers on the probability
of no blood sugar test (if undiagnosed)

Contemporaneous Marginal Effects Direct Effectsa Total Effectb

Case 1 Case 2 - Case 1 Case 1 Case 2 - Case 1
Case 1 → Case 2 (Reduction in Barrier) (Level) (∆pp) (Level) (∆pp)

Full time → No work 0.166 −0.5 0.178 −0.6
Part time → No work 0.180 −1.8 0.194 −2.2
HH income medium → 90th percentile 0.164 −0.5 0.175 −0.7
No insurance → Medicare 0.227 −6.1 0.282 −10.8
Survival probability 50% → 100% 0.175 −1.5 0.183 −1.1
Pessimism full effect (highest → lowest) 0.194 −3.8 0.207 −4.0

Baseline 0.164 0.175
→ No work −0.2 −0.3
→ HH income 1 S.D. higher −0.5 −0.6
→ Medicare+private plan −0.7 −1.9
→ Survival prob 100 −0.4 −0.3
→ pessimism lowest −0.9 −0.9

N 417,410 451,810

a: Direct effects are the effects of change in a specified variable on the probability of not having a
blood sugar test conditional on having any doctor visits and not having been previously diagnosed
with diabetes.
b: Total effects measure both direct effects of the change in a specified variable on blood sugar tests
as well as the indirect effects of that change on doctor visits and other health behaviors.
Note 1: I control for all other variables in the estimation (Table A5 in Appendix F) and these
simulations use results from the FIML/DFRE multiple equation model.
Note 2: the medium household income is $39,132 and the 90th percentile household income is
$134,000. 1 S.D. of household income is $581,60.88.

6.2.3 Lifestyle behaviors

Entering a period, an individual may have been diagnosed with diabetes or not diagnosed.

If diagnosed, she learns the true disease state and may be receiving different types of care

based on the true disease state; this health information may influence the observed lifestyle

behaviors. If not diagnosed, she may receive a blood sugar test (and the associated health

information) or not in the previous period. Individuals with those different characteristics

may choose different lifestyle behaviors. The contemporaneous marginal effects of the

variables of interest in the lifestyle behavior equations (i.e., the levels of exercise, smoking,

and binge drinking equations) are reported in Table 8.

Let’s first look at whether an individual who takes a test and is not diagnosed with

diabetes responds to the gained health information and adjusts her lifestyle behaviors.

Compared to an individual who does not take a test in the last period, an individual who

takes a test is less likely to not exercise or take a mild exercise by 1.6 pp (or 6.6 percent)

and 0.4 pp (or 1.8 percent), respectively, but she is more likely to engage in vigorous

exercise by 0.8 pp (or 3.4 percent). She is also more likely to smoke and binge drink by
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5.0 and 0.5 pp, respectively.

If the individual is diagnosed with diabetes, she also adjusts her lifestyle behaviors

according to the type of care she receives. The simulated marginal effects suggest that

an individual who is diagnosed with diabetes are less likely to take any exercise and to

engage in vigorous exercise than an individual without diabetes diagnosis or receives less

severe treatment. For example, compared to an individual who takes a test and is not

diagnosed with diabetes, an individual who is diagnosed with diabetes but has no medical

treatment is more likely to not exercise by 1.4 pp and less likely to do vigorous exercise by

0.3 pp. While a diabetic individual with insulin treatment is more likely to not exercise

by 5.8 pp and less likely to do vigorous exercise by 4.5 pp than a diabetic individual with

oral medication treatment. The simulated marginal effects also suggest that individuals

response to the diagnosis of diabetes by reducing smoking and binge drinking behaviors.

Individuals with higher longevity expectations do more exercise, less likely to smoke, but

more likely to binge drink. Lastly, individuals with higher body mass are more likely to

have none or mild exercise and less likely to do vigorous exercise, but they are less likely

to smoke or binge drink, holding other variables constant.

Table 8: Simulations for the impacts of health information on lifestyle behaviors

Contemporaneous Marginal Effects Exercise: none Exercise: mild Exercise: vigorous

Case 1 Case 2 - Case 1 Case 1 Case 2 - Case 1 Case 1 Case 2 - Case 1
Case 1 → Case 2 (Level) (∆pp) (Level) (∆pp) (Level) (∆pp)

No test → Test and no diabetes 0.244 −1.6 0.218 −0.4 0.234 0.8
Test and no diabetes → Diabetes without med 0.228 1.4 0.215 −2.2 0.242 −0.3
Diabetes without med → Diabetes with med 0.242 0.5 0.193 4.0 0.239 −2.4
Diabetes with med → Diabetes with insulin 0.247 5.8 0.233 −1.5 0.215 −4.5
Survival probability 50% →100% 0.244 −1.0 0.220 −0.6 0.226 1.3
BMI: 20→32 0.210 7.0 0.185 5.5 0.273 −8.0

Smoking Binge drinking

Case 1 Case 2 - Case 1 Case 1 Case 2 - Case 1
Case 1 - Case 2 (Level) (∆pp) (Level) (∆pp)

No test → Test and no diabetes 0.085 5.0 0.106 0.5
Test and no diabetes → Diabetes without med 0.136 3.4 0.111 −2.5
Diabetes without med → Diabetes with med 0.170 −2.1 0.086 −0.7
Diabetes with med → Diabetes with insulin 0.149 −1.0 0.080 −0.9
Survival probability 50% →100% 0.141 −1.3 0.098 0.8
BMI: 20→32 0.172 −5.6 0.107 −1.2

Note 1: I control for all other variables in the estimation (Table A3 and A4 in Appendix F) and the simulates use estimation results
from the FIML/DFRE multiple equation model.
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6.2.4 Health production

Knowing that the underlying blood sugar evolution governs an individual’s diabetes state

transition and that body mass is highly correlated with the onset of diabetes and risks of

other complications, I discuss the key determinants of those production processes.

Blood sugar evolution

An individual’s blood sugar level (A1c value) depends on her BMI entering the period,

her diabetes state in the period, and her medical and non-medical care inputs chosen in

the current period. The simulated contemporaneous effects, both direct and total effects,

of some key contributors to the A1c evolution are displayed in Table 9. The direct effects

and total effects are very close, so I focus my discussion on the direct effects.

Several mechanisms of blood sugar evolution that are consistent with our hypotheses

are discovered. First, diabetes state plays an important role in influencing an individual’s

blood sugar level: an individual who is diagnosed with diabetes has higher blood sugar

levels (measured by the A1c test readings) than those without diabetes. For example,

an individual with diabetes but no medical treatment has a higher A1c value by 0.487

units (or 8.2 percent) than an individual who is tested but not diagnosed with diabetes. In

addition, among people with diabetes, the ones receive insulin shot or oral medication have

higher blood sugar levels than those receiving no medical treatment. Second, doctor visits

have protection effects on an individual’s blood sugar level. Specifically, an individual with

a high level of doctor visits has a lower A1c reading by 0.031 units (or 0.5 percent) than

an individual with a low level of doctor visits. Third, body mass (BMI) influences blood

sugar levels. On average, an individual with a BMI of 32 (i.e., who is obese) has a higher

A1c reading by 0.172 units (2.9 percent) than an individual with a BMI of 20 (i.e., who

has normal weight). Lastly, lifestyle behaviors also impact the evolution of blood sugar

levels. A higher level of exercise makes the individual have a lower blood sugar level. If

an individual starts to binge drink, her A1c value becomes 0.096 units lower. This result

is consistent with some medical research that claims “while moderate amounts of alcohol

may cause blood sugar to rise, excess alcohol can actually decrease your blood sugar level”

(WebMD Medical, 2017).24

24https://www.webmd.com/diabetes/guide/drinking-alcohol access in October 2017
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Table 9: Simulations for the impacts of key determinants on blood sugar evolution

Contemporaneous Marginal Effects Direct Effectsa Total Effectsb

Case 1 Case 2- Case 1 Case 1 Case 2- Case 1
Case 1 → Case 2 (Level) ∆Value ∆Percent (Level) ∆Value ∆Percent

Doctor visits: low → high 6.125 −0.031 −0.5 6.130 −0.034 −0.6
Exercise: none → mild 6.104 0.027 0.4 6.105 0.029 0.5
Exercise: mild → moderate 6.131 −0.005 −0.1 6.133 −0.005 −0.1
Exercise: moderate → vigorous 6.126 −0.028 −0.5 6.129 −0.028 −0.5
Smoke → No smoke 6.146 −0.036 −0.6 6.155 −0.043 −0.7
Binge drink → No binge drink 6.029 0.096 1.6 6.033 0.095 1.6
No test → Test and no diabetes 5.916 0.021 0.4 5.917 0.020 0.3
Test and no diabetes → Diabetes without med 5.936 0.487 8.2 5.937 0.488 8.2
Diabetes without med → diabetes with med 6.423 0.252 3.9 6.425 0.254 3.9
Diabetes with med → diabetes with insulin 6.675 0.527 7.9 6.678 0.521 7.8
BMI: 20 → 32 6.000 0.172 2.9 6.004 0.173 2.9

a: Direct effects are the effects of change in specified variable on the blood sugar level (or A1c reading).
b: Total effects measure both direct effects of the change in specified variable as well as the indirect effects of that
change on blood sugar test, diagnosis of diabetes, and hospital nights.
Note: I control for all other variables in the estimation (Table A7 in Appendix F) and the simulations use estimation
results from the FIML/DFRE multiple equation model.

BMI production

The BMI production depends on an individual’s diabetes state and her medical and non-

medical inputs in the current period. Additionally, since BMI production may reflect an

individual’s diet or nutrition behavior that we do not observe directly from data, the BMI

production may also depend on the health information associated with a blood sugar test.

The simulated direct and total marginal effects are shown in Table 10. The direct effects

and total effects are very close, so I also focus my discussion on the direct effects.

First, lifestyle behaviors are significant predictors of BMI production. Generally, a

higher level of exercise leads to lower BMI values. For example, compared to having

a moderate level of exercise, having a vigorous level of exercise lowers an individual’s

BMI by 0.122 units (or 0.4 percent) and having a mild level of exercise elevates her BMI

by 0.162 units, holding all other variables constant. On average, smoking reduces an

individual’s BMI by 0.418 units. This result is consistent with the finding that current

smokers have significantly lower BMI than never smokers using the National Health and

Nutrition Examination Surveys (NHANES) (Plurphanswat and Rodu, 2014).

Second, diabetes states are also important contributors to BMI production through

medical treatment and information effects. Compared to an individual who is tested

but not diagnosed with diabetes, an individual who is diagnosed with an early stage of

diabetes (i.e., diabetes without medical treatment) has a lower BMI by 0.180 units (or 0.6

percent). The negative effects of the diagnosis of an early stage diabetes may reflect that
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an individual responds to this health information and consumes a better diet to control her

body mass. However, having oral medication or insulin shot as a treatment for diabetes

increases an individual’s BMI. This result is consistent with the studies showing that

weight gain is not an uncommon phenomenon among people taking insulin treatments.

The marginal effects also suggest that individuals are not likely to change diet behavior

and respond to health information associated with a test but no diagnosis of diabetes.

However, we do find them to respond to this health information by increasing exercise

levels. Lastly, individuals with higher longevity expectations have lower body mass.

Table 10: Simulations for the impacts of key determinants on body mass production

Contemporaneous Marginal Effects Direct Effectsa Total Effectsb

Case 1 Case 2 - Case 1 Case 1 Case 2 - Case 1
Case 1 → Case 2 (Level) ∆Value ∆Percent (Level) ∆Value ∆Percent

Exercise: none → mild 28.439 0.064 0.2 28.449 0.072 0.3
Exercise: mild → moderate 28.503 −0.162 −0.6 28.521 −0.161 −0.6
Exercise: moderate → vigorous 28.341 −0.122 −0.4 28.361 −0.120 −0.4
Smoke → No smoke 28.006 0.418 1.5 28.032 0.407 1.5
Binge drink → No binge drink 28.393 −0.026 −0.1 28.414 −0.030 −0.1
No test → Test and no diabetes 28.355 0.002 0.0 28.368 −0.006 0.0
Test and no diabetes → Diabete without med 28.357 −0.180 −0.6 28.363 −0.183 −0.6
Diabetes without med → Diabetes with med 28.177 0.195 0.7 28.180 0.199 0.7
Diabetes with med → Diabetes with insulin 28.372 0.351 1.2 28.379 0.335 1.2
Survival prob 50% → 100% 28.402 −0.044 −0.2 28.418 −0.042 −0.1

a: Direct effects are the effects of change in the specified variable on the body mass index value.
b: Total effects measure both direct effects of change in the specified variable as well as the indirect effect of that
change on body mass through testing behavior, diabetes diagnosis and states, and hospital nights.
Note: I control for all other variables in the estimation (Table A8 in Appendix F) and the simulation use estimation
results from the FIML/DFRE multiple equation model.

7 Policy Simulations

With the estimated data generating process, I can simulate an individual’s behaviors and

health outcomes over time to evaluate some potential policy interventions. That is, I

simulate the behaviors and outcomes of individuals assuming a policy is implemented and

successfully changes some targeting behaviors of the individuals and then compare the

simulated values to the ones for the baseline scenario (i.e., without the policy interven-

tion). The policy simulations I discuss in this section include a wellness program that

improves exercise behavior, a diabetes prevention program targeting at the exercise level

of individuals with pre-diabetes, a national screening program for 60 years olds, and a

health anxiety improvement program.
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7.1 Simulation 1: A wellness program to improve exercise be-

havior

Given the importance of body mass and lifestyle behaviors to an individual’s short- and

long-term health outcomes, many health policies and programs are targeting at improving

individuals’ lifestyle behaviors. For example, the workplace wellness programs offer a

group of activities to help the employees to have better lifestyle behaviors. According to

the 2016 annual survey conducted by Kaiser Family Foundation (Kaiser) and the Health

Research & Educational Trust (HRET), 46% of small firms and 83% of large firms offer

a program in at least one of these areas: smoking cessation, weight management (e.g.,

on-site fitness programs or facilities), and behavioral or lifestyle coaching.

This policy simulation aims to evaluate the effects of a successful wellness program

that establishes a high (i.e., vigorous) level of exercise among individuals. Specifically, it

examines whether the high level of exercise can make the individuals (1) to have a higher

rate of diabetes screening; (2) less likely to develop type-2 diabetes and pre-diabetes; and

(3) to have fewer adverse health shocks and live longer. The policy simulation results are

reported in Table 11.

The simulation results suggest that the wellness program improves individuals’ health

outcomes from several different aspects. First, it reduces the average body mass by

1.032 percent, which comes with the largest reduction in the share of obese observations,

by 4.687 percent. Second, individuals are less likely to develop type-2 diabetes or pre-

diabetes. The wellness program lowers the probability of new diabetes diagnosis by 1.360

percent, the probability of undiagnosed diabetes by 1.913 percent, and the probability of

pre-diabetes by 1.537 percent. Third, individuals have lower medical care consumption,

fewer adverse health outcomes, and live longer. Specifically, individuals are 10.181 percent

less likely to have a high level of doctor visits, 12.226 percent less likely to have a night in

hospital, and the average nights in hospital is 11.357 percent lower if any hospital night

happens. The death rate is 10.181 percent lower.

However, the wellness program increases the probability of not having a blood sugar

test over a two-years period by 1.425 percent, which leads to a slightly higher probability

of unknown pre-diabetes in the population.
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Table 11: Policy simulation: A wellness program to improve exercise level

Baseline Policy Simulation Percent change (%)
Variable Mean Mean Mean
Doctor visits

None 0.068 0.070 3.232
Low 0.650 0.658 1.208
High 0.282 0.272 −3.561

Smoking 0.130 0.130 −0.064
Binge drinking 0.104 0.105 0.636

No blood sugar test (if no diagnosed) 0.173 0.176 1.425

BMI value 28.553 28.259 −1.032
Underweight 0.045 0.050 11.727
Normal 0.240 0.251 4.538
Overweight 0.309 0.312 0.955
Obese 0.407 0.388 −4.687

Prob of newly diagnosed diabetes (ind level) 0.106 0.104 −1.360
Prob of undiagnosed diabetes 0.081 0.079 −1.913
Prob of diagnosed diabetes 0.251 0.251 −0.020

Without med observations 0.037 0.037 −0.229
With oral medication 0.157 0.156 −0.245
With insulin shot 0.057 0.057 0.737

Prob of prediabetes 0.247 0.243 −1.537
Prob of unknown (among prediabetes) 0.172 0.175 1.603

Prob of having any hospital nights 0.258 0.227 −12.226
Number of hospital nights (if any) 6.764 5.996 −11.357
Death 0.037 0.033 −10.181

Total number of observations 535,887
Total number of individuals 215,410
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7.2 Simulation 2: A diabetes prevention program

To prevent more people from developing diabetes, the CDC starts a lifestyle change

program, which is designed for people who have prediabetes but have not developed

diabetes yet, as part of the national diabetes prevention program. To be eligible for the

CDC-recognize lifestyle change program, an individual has to be at least 18 years old,

overweight (BMI ≥24, ≥22 if Asian), have no previous diagnosis of type 1 or type 2

diabetes, and have a blood test result in the pre-diabetes range (i.e., Hemoglobin A1C

5.7-6.4). Studies show that people with prediabetes who take part in the CDC’s structured

lifestyle change program can cut their risk of developing type 2 diabetes by 58 percent,

and even 71 percent for people over 60 years old.

This policy simulation follows the CDC’s lifestyle change program to impose a high

level of exercise on people who is diagnosed with pre-diabetes, but with a more relaxed

enrollment standard. That is, the program impose a high level of exercise on all individuals

who have a blood sugar test and the result is in at least the pre-diabetes range (i.e., A1c

> 5.7), regardless of previous diagnoses of diabetes or BMI. The policy simulation results

are displayed in Table 12.

The effects of the diabetes prevention program are very similar to the ones in the

wellness program simulation, but with smaller magnitudes. Regarding improved health

outcomes, the diabetes prevention program reduces average BMI value by 0.499 percent,

which comes with a 2.335 percent reduction in the share of obese observations. With

the diabetes prevention program, individuals are less likely to develop diabetes or pre-

diabetes. Specifically, the probability of new diabetes diagnosis is 0.465 percent lower, the

probability of undiagnosed diabetes is 0.814 percent lower, and the probability of develop-

ing pre-diabetes is 0.663 percent lower. Additionally, individuals have lower medical care

consumptions, fewer adverse health shocks, and live longer. The probability of having a

night in hospital, the average number of hospital nights (if any), and the death rate all

reduce by around 6 percent, and individuals are 1.628 percent less likely to have a high

level of doctor visits.

At the same time, the probability of not having a blood sugar test is slightly higher

(by 0.451 percent), which causes the probability of a unknown pre-diabetes to be 0.501

percent higher.
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Table 12: Policy simulation: A diabetes prevention program

Baseline Policy Simulation Percent change (%)
Mean Mean Mean

Doctor visits
None 0.068 0.068 1.336
Low 0.650 0.654 0.567
High 0.282 0.277 −1.628

Exercise
None 0.233 0.109 −53.072
Mild 0.223 0.114 −48.681
Moderate 0.314 0.167 −46.746
Vigorous 0.230 0.609 164.735

Smoking 0.130 0.130 −0.081
Binge drinking 0.104 0.105 0.222

No blood sugar test (if no diagnosed) 0.173 0.174 0.451

BMI value 28.553 28.411 −0.499
Underweight 0.045 0.047 4.640
Normal 0.240 0.245 2.199
Overweight 0.309 0.311 0.698
Obese 0.407 0.397 −2.335

Prob of newly diagnosed diabetes (ind level) 0.106 0.105 −0.465
Prob of undiagnosed diabetes 0.081 0.080 −0.814
Prob of diagnosed diabetes 0.251 0.251 0.276

Without med observations 0.037 0.037 0.153
With oral medication 0.157 0.157 0.079
With insulin shot 0.057 0.057 0.897

Prob of prediabetes 0.247 0.245 −0.663
Prob of unknown (among prediabetes) 0.172 0.173 0.501

Prob of having any hospital nights 0.258 0.241 −6.454
Number of hospital nights (if any) 6.764 6.327 −6.464
Death 0.037 0.034 −6.049

Total number of observations 535,887
Total number of individuals 215,410
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7.3 Simulation 3: A national diabetes screening program at age

60

The lack of information about own health acts as a barrier to better lifestyle behaviors in

the population. As a result, many countries have started to implement national screening

programs to address the lack of information and promote better lifestyle behaviors. For

example, the United Kingdom implemented a population-wide screening and prevention

program for cardiovascular disease, the NHS Health Check program, in adults who are

40 to 74 years old in 2011 (Dalton and Soljak, 2012) and the National Health Screening

Program (NHSP) in Korea provides various types of free health screenings since 1995

(Kim et al., 2017).

This policy simulation assumes a national diabetes screening program in the U.S.

that provides diabetes screening for all individuals who are 60 years old and have not

been diagnosed with diabetes. In this policy simulation, I am interested in whether this

national diabetes screening program can improve individuals’ diabetes screening behaviors

afterward (i.e., after age 60) and their subsequent lifestyle behaviors and health outcomes.

The simulation results are shown in Table 13. The sample I use for this policy simulation

include all individuals who have not been diagnosed with diabetes at least till age 59.

According to the simulation results, this program improves individuals’ overall screen-

ing behavior as well as the screening behavior after age 60. After implementing the policy,

the probability of not having a blood sugar test in a 2-year period decreases by 22.890 per-

cent overall and by 6.804 percent for people over 60 years old. Additionally, the national

diabetes screening program helps individuals learn their true disease states, especially

those with pre-diabetes. The simulation results suggest that it increases the rate of new

diagnoses of diabetes by 8.431 percent but reduces the share of undiagnosed diabetic ob-

servations by 3.036 percent, it also reduces the probability of unknown pre-diabetes by

23.176 percent. Lastly, the national screening program also influences individuals’ med-

ical care consumption and lifestyle behaviors. With the program, the probability of no

doctor visits is 4.478 percent lower but the probability of having any hospital nights is

1.436 percent higher. Individuals have slightly higher levels of exercise and lower BMI.
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Table 13: Policy simulation: A national screening program at age 60

Baseline Policy Simulation Percent change (%)
Mean Mean Mean

Doctor visits
None 0.087 0.083 −4.478
Low 0.701 0.702 0.160
High 0.212 0.215 1.314

Exercise
None 0.157 0.157 −0.165
Mild 0.234 0.234 −0.132
Moderate 0.330 0.330 0.130
Vigorous 0.279 0.279 0.050

Smoking 0.164 0.168 1.988
Binge drinking 0.157 0.157 0.078

No blood sugar test (if not diagnosed) 0.191 0.147 −22.890
No blood sugar test 0.165 0.154 −6.804
(if no diagnosis and after age 60)

BMI value 29.146 29.145 −0.004
Underweight 0.031 0.031 −0.611
Normal 0.212 0.212 0.051
Overweight 0.313 0.314 0.054
Obese 0.444 0.444 −0.020

Prob of newly diagnosed diabetes (ind level) 0.085 0.092 8.431
Prob of undiagnosed diabetes 0.091 0.088 −3.036
Prob of diagnosed diabetes 0.053 0.058 9.428

Without med observations 0.010 0.011 10.054
With oral medication 0.038 0.041 9.283
With insulin shot 0.005 0.006 9.275

Prob of pre-diabetes 0.298 0.297 −0.244
Prob of unknown (among prediabetes) 0.187 0.144 −23.176

Prob of having any hospital nights 0.181 0.184 1.436
Number of hospital nights (if any) 5.490 5.499 0.161
Death 0.007 0.007 1.502

Total number of observations 123,291
Total number of individuals 40,444
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7.4 Simulation 4: Information campaign and awareness pro-

gram target at information avoidance

There are many diabetes awareness programs and information campaigns. For exam-

ple, the American Diabetes Association awareness program works to “reach communi-

ties throughout the United States to create awareness, prevent diabetes among at-risk

populations, and ensure that all people with diabetes get the best care, treatment, and

information about how to manage their diabetes”. This policy simulation assumes an

awareness program that alleviates health anxiety by providing information about dia-

betes prevention and educating individuals the importance of diabetes screening. In this

policy simulation, I impose the lowest level of pessimism on all individuals. Although it

is not very feasible to reduce the pessimism level of everyone to the lowest, this extreme

case helps us to understand the largest effect of this type of policy. The policy simulation

results are reported in Table 14.

The simulation results indicate, first, the program makes individuals less likely to

avoid health information. The reduction of health anxiety reduces the probability of

not having a blood sugar test (over a two-year period) by 5.502 percent, which leads

to a 0.865 percent decrease in the probability of undiagnosed diabetic observations and

a 5.243 percent decrease in the probability of unknown pre-diabetes. It causes a higher

share of diagnosed diabetic observations, but more of them are in the early diabetes stages.

Second, the program also makes individuals less likely to avoid doctor visits, reducing the

probability of no doctor visits by 18.473 percent. Lastly, the reduction of health anxiety

also influences individuals’ lifestyle behaviors and makes them more likely to take a higher

level of exercise and less likely to smoke.
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Table 14: Policy simulation: A health anxiety improvement program

Baseline Policy Simulation Percent change (%)
Mean Mean Mean

Doctor visits
None 0.068 0.055 −18.473
Low 0.650 0.657 1.007
High 0.282 0.288 2.101

Exercise
None 0.233 0.211 −9.693
Mild 0.223 0.216 −3.074
Moderate 0.314 0.326 3.740
Vigorous 0.230 0.248 7.690

Smoking 0.130 0.114 −12.057
Binge drinking 0.104 0.108 3.650

No blood sugar test (if not diagnosed) 0.173 0.164 −5.502

BMI value 28.553 28.553 −0.002
Underweight 0.045 0.045 0.073
Normal 0.240 0.240 −0.023
Overweight 0.309 0.309 0.006
Obese 0.407 0.407 0.001

Prob of newly diagnosed diabetes (ind level) 0.106 0.107 0.983
Prob of undiagnosed diabetes 0.081 0.080 −0.865
Prob of diagnosed diabetes 0.251 0.252 0.519

Without med observations 0.037 0.037 0.599
With oral medication 0.157 0.158 0.555
With insulin shot 0.057 0.057 0.368

Prob of prediabetes 0.247 0.246 −0.209
Prob of unknown (among prediabetes) 0.172 0.163 −5.243

Prob of having any hospital nights 0.258 0.258 −0.017
Number of hospital nights (if any) 6.764 6.757 −0.117
Death 0.037 0.035 −3.464

Total number of observations 535,887
Total number of individuals 215,410

8 Conclusion

This paper evaluates the role of many contributors, including health anxiety, to the ob-

served type-2 diabetes screening behavior by jointly estimating a set of equations derived

from a forward-looking individual’s decisionmaking optimization problem. With data

from the HRS, I find that the monetary costs, time costs, health and longevity expec-

tations, and health anxiety are all important contributors to an individual’s blood sugar

testing behavior. Specifically, a health anxious individual is less likely to receive a dia-

betes screening test by reducing the number of doctor visits and avoiding the test during a

visit. Individual’s health-related behaviors also respond to health information associated

with screening tests.
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